ﻻ يوجد ملخص باللغة العربية
The simultaneous condensation of electronic and structural degrees of freedom gives rise to new states of matter, including superconductivity and charge-density-wave formation. When exciting such a condensed system, it is commonly assumed that the ultrafast laser pulse disturbs primarily the electronic order, which in turn destabilizes the atomic structure. Contrary to this conception, we show here that structural destabilization of few atoms causes melting of the macroscopic ordered charge-density wave in 1T-TiSe2. Using ultrafast pump-probe non-resonant and resonant X-ray diffraction, we observe full suppression of the Se 4p orbital order and the atomic structure at excitation energies more than one order of magnitude below the suggested excitonic binding energy. Complete melting of the charge-density wave occurs 4-5 times faster than expected from a purely electronic charge-screening process, strongly suggesting a structurally assisted breakup of excitonic correlations. Our experimental data clarifies several questions on the intricate coupling between structural and electronic order in stabilizing the charge-density-wave in 1T-TiSe2. The results further show that electron-phonon-coupling can lead to different, energy dependent phase-transition pathways in condensed matter systems, opening new possibilities in the conception of non-equilibrium phenomena at the ultrafast scale.
1T-TiSe2 has a semimetallic band structure at room temperature and undergoes phase transition to a triple-q charge density wave (CDW) state with a commensurate superlattice structure (2a * 2a * 2c) below Tc ~ 200 K at ambient pressure. This phase tra
The correlation between electronic and crystal structures of 1T-TiSe2 in the charge density wave (CDW) state is studied by x-ray diffraction. Three families of reflections are used to probe atomic displacements and the orbital asymmetry in Se. Two di
Besides magnetic and charge order, regular arrangements of orbital occupation constitute a fundamental order parameter of condensed matter physics. Even though orbital order is difficult to identify directly in experiments, its presence was firmly es
The controversy regarding the precise nature of the high-temperature phase of 1T-TiSe2 lasts for decades. It has intensified in recent times when new evidence for the excitonic origin of the low-temperature charge-density wave state started to unveil
The transition metal dichalcogenide 1T-TiSe2 is a quasi two-dimensional layered material with a charge density wave (CDW) transition temperature of TCDW 200 K. Self-doping effects for crystals grown at different temperatures introduce structural defe