ﻻ يوجد ملخص باللغة العربية
In the disks of four jellyfish galaxies from the GASP sample at redshift $sim 0.05$ we detect molecular gas masses systematically higher than in field galaxies. These galaxies are being stripped of their gas by ram pressure from the intra cluster medium and are, in general, forming stars at high rate with respect to non-stripped galaxies of similar stellar masses. We find that, unless giant molecular clouds in the disk are unbound by ram pressure leading to exceptionally high CO--to--$rm H_2$ conversion factors, these galaxies have a molecular gas content 4-5 times higher than normal galaxies of similar masses, and molecular gas depletion times ranging from $sim$1 to 9 Gyr, corresponding to generally very low star formation efficiencies. The molecular gas mass within the disk is a factor between 4 and $sim$100 times higher than the neutral gas mass, as opposed to the disks of normal spirals that contain similar amounts of molecular and neutral gas. Intriguingly, the molecular plus neutral total amount of gas is similar to that in normal spiral galaxies of similar stellar mass. These results strongly suggest that ram pressure in disks of galaxies during the jellyfish phase leads to a very efficient conversion of HI into $rm H_2$.
Shells are fine stellar structures identified by their arc-like shapes present around a galaxy and currently thought to be vestiges of galaxy interactions and/or mergers. The study of their number, geometry, stellar populations and gas content can he
Within the GASP survey, aimed at studying the effect of the ram-pressure stripping on the star formation quenching in cluster galaxies, we analyze here ALMA observations of the jellyfish galaxy JW100. We find an unexpected large amount of molecular g
Measurements of the neutral hydrogen gas content of a sample of 93 post-merger galaxies are presented, from a combination of matches to the ALFALFA.40 data release and new Arecibo observations. By imposing completeness thresholds identical to that of
The outskirts of galaxies offer extreme environments where we can test our understanding of the formation, evolution, and destruction of molecules and their relationship with star formation and galaxy evolution. We review the basic equations that are
We study the evolution of the cold gas content of galaxies by splitting the interstellar medium into its atomic and molecular hydrogen components, using the galaxy formation model GALFORM in the LCDM framework. We calculate the molecular-to-atomic hy