Transmission spectroscopy and Rossiter-McLaughlin measurements of the young Neptune orbiting AU Mic


الملخص بالإنكليزية

AU Mic~b is a Neptune size planet on a 8.47-day orbit around the nearest pre-main sequence ($sim$20 Myr) star to the Sun, the bright (V=8.81) M dwarf AU Mic. The planet was preliminary detected in Doppler radial velocity time series and recently confirmed to be transiting with data from the TESS mission. AU Mic~b is likely to be cooling and contracting and might be accompanied by a second, more massive planet, in an outer orbit. Here, we present the observations of the transit of AU Mic~b using ESPRESSO on the VLT. We obtained a high-resolution time series of spectra to measure the Rossiter-McLaughlin effect and constrain the spin-orbit alignment of the star and planet, and simultaneously attempt to retrieve the planets atmospheric transmission spectrum. These observations allow us to study for the first time the early phases of the dynamical evolution of young systems. We apply different methodologies to derive the spin-orbit angle of AU Mic~b, and all of them retrieve values consistent with the planet being aligned with the rotation plane of the star. We determine a conservative spin-orbit angle $lambda$ value of $-2.96^{+10.44}_{-10.30}$, indicative that the formation and migration of the planets of the AU Mic system occurred within the disk. Unfortunately, and despite the large SNR of our measurements, the degree of stellar activity prevented us from detecting any features from the planetary atmosphere. In fact, our results suggest that transmission spectroscopy for recently formed planets around active young stars is going to remain very challenging, if at all possible, for the near future.

تحميل البحث