ﻻ يوجد ملخص باللغة العربية
Circuit routing is a fundamental problem in designing electronic systems such as integrated circuits (ICs) and printed circuit boards (PCBs) which form the hardware of electronics and computers. Like finding paths between pairs of locations, circuit routing generates traces of wires to connect contacts or leads of circuit components. It is challenging because finding paths between dense and massive electronic components involves a very large search space. Existing solutions are either manually designed with domain knowledge or tailored to specific design rules, hence, difficult to adapt to new problems or design needs. Therefore, a general routing approach is highly desired. In this paper, we model the circuit routing as a sequential decision-making problem, and solve it by Monte Carlo tree search (MCTS) with deep neural network (DNN) guided rollout. It could be easily extended to routing cases with more routing constraints and optimization goals. Experiments on randomly generated single-layer circuits show the potential to route complex circuits. The proposed approach can solve the problems that benchmark methods such as sequential A* method and Lees algorithm cannot solve, and can also outperform the vanilla MCTS approach.
Monte Carlo tree search (MCTS) is extremely popular in computer Go which determines each action by enormous simulations in a broad and deep search tree. However, human experts select most actions by pattern analysis and careful evaluation rather than
Many of the strongest game playing programs use a combination of Monte Carlo tree search (MCTS) and deep neural networks (DNN), where the DNNs are used as policy or value evaluators. Given a limited budget, such as online playing or during the self-p
Monte Carlo Tree Search (MCTS) has improved the performance of game engines in domains such as Go, Hex, and general game playing. MCTS has been shown to outperform classic alpha-beta search in games where good heuristic evaluations are difficult to o
We consider Monte-Carlo Tree Search (MCTS) applied to Markov Decision Processes (MDPs) and Partially Observable MDPs (POMDPs), and the well-known Upper Confidence bound for Trees (UCT) algorithm. In UCT, a tree with nodes (states) and edges (actions)
Monte Carlo tree search (MCTS) has achieved state-of-the-art results in many domains such as Go and Atari games when combining with deep neural networks (DNNs). When more simulations are executed, MCTS can achieve higher performance but also requires