ترغب بنشر مسار تعليمي؟ اضغط هنا

Fetch-Directed Instruction Prefetching Revisited

69   0   0.0 ( 0 )
 نشر من قبل Rakesh Kumar
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Prior work has observed that fetch-directed prefetching (FDIP) is highly effective at covering instruction cache misses. The key to FDIPs effectiveness is having a sufficiently large BTB to accommodate the applications branch working set. In this work, we introduce several optimizations that significantly extend the reach of the BTB within the available storage budget. Our optimizations target nearly every source of storage overhead in each BTB entry; namely, the tag, target address, and size fields. We observe that while most dynamic branch instances have short offsets, a large number of branches has longer offsets or requires the use of full target addresses. Based on this insight, we break-up the BTB into multiple smaller BTBs, each storing offsets of different length. This enables a dramatic reduction in storage for target addresses. We further compress tags to 16 bits and avoid the use of the basic-block-oriented BTB advocated in prior FDIP variants. The latter optimization eliminates the need to store the basic block size in each BTB entry. Our final design, called FDIP-X, uses an ensemble of 4 BTBs and always outperforms conventional FDIP with a unified basic-block-oriented BTB for equal storage budgets.



قيم البحث

اقرأ أيضاً

We propose an approach to data memory prefetching which augments the standard prefetch buffer with selection criteria based on performance and usage pattern of a given instruction. This approach is built on top of a pattern matching based prefetcher, specifically one which can choose between a stream, a stride, or a stream followed by a stride. We track the most recently called instructions to make a decision on the quantity of data to prefetch next. The decision is based on the frequency with which these instructions are called and the hit/miss rate of the prefetcher. In our approach, we separate the amount of data to prefetch into three categories: a high degree, a standard degree and a low degree. We ran tests on different values for the high prefetch degree, standard prefetch degree and low prefetch degree to determine that the most optimal combination was 1, 4, 8 lines respectively. The 2 dimensional selection criteria improved the performance of the prefetcher by up to 9.5% over the first data prefetching championship winner. Unfortunately performance also fell by as much as 14%, but remained similar on average across all of the benchmarks we tested.
The Sphynx project was an exploratory study to discover what might be done to improve the heavy replication of in- structions in independent instruction caches for a massively parallel machine where a single program is executing across all of the cor es. While a machine with only many cores (fewer than 50) might not have any issues replicating the instructions for each core, as we approach the era where thousands of cores can be placed on one chip, the overhead of instruction replication may become unacceptably large. We believe that a large amount of sharing should be possible when the ma- chine is configured for all of the threads to issue from the same set of instructions. We propose a technique that allows sharing an instruction cache among a number of independent processor cores to allow for inter-thread sharing and reuse of instruction memory. While we do not have test cases to demonstrate the potential magnitude of performance gains that could be achieved, the potential for sharing reduces the die area required for instruction storage on chip.
223 - Tie Hou 2009
In this paper, we study how certain conditions can affect the transformations on the states of the memory of a strict load-store Maurer ISA, when half of the data memory serves as the part of the operating unit.
Customization of processor architectures through Instruction Set Extensions (ISEs) is an effective way to meet the growing performance demands of embedded applications. A high-quality ISE generation approach needs to obtain results close to those ach ieved by experienced designers, particularly for complex applications that exhibit regularity: expert designers are able to exploit manually such regularity in the data flow graphs to generate high-quality ISEs. In this paper, we present ISEGEN, an approach that identifies high-quality ISEs by iterative improvement following the basic principles of the well-known Kernighan-Lin (K-L) min-cut heuristic. Experimental results on a number of MediaBench, EEMBC and cryptographic applications show that our approach matches the quality of the optimal solution obtained by exhaustive search. We also show that our ISEGEN technique is on average 20x faster than a genetic formulation that generates equivalent solutions. Furthermore, the ISEs identified by our technique exhibit 35% more speedup than the genetic solution on a large cryptographic application (AES) by effectively exploiting its regular structure.
Modern Systems-on-Chip (SoC) designs are increasingly heterogeneous and contain specialized semi-programmable accelerators in addition to programmable processors. In contrast to the pre-accelerator era, when the ISA played an important role in verifi cation by enabling a clean separation of concerns between software and hardware, verification of these accelerator-rich SoCs presents new challenges. From the perspective of hardware designers, there is a lack of a common framework for the formal functional specification of accelerator behavior. From the perspective of software developers, there exists no unified framework for reasoning about software/hardware interactions of programs that interact with accelerators. This paper addresses these challenges by providing a formal specification and high-level abstraction for accelerator functional behavior. It formalizes the concept of an Instruction Level Abstraction (ILA), developed informally in our previous work, and shows its application in modeling and verification of accelerators. This formal ILA extends the familiar notion of instructions to accelerators and provides a uniform, modular, and hierarchical abstraction for modeling software-visible behavior of both accelerators and programmable processors. We demonstrate the applicability of the ILA through several case studies of accelerators (for image processing, machine learning, and cryptography), and a general-purpose processor (RISC-V). We show how the ILA model facilitates equivalence checking between two ILAs, and between an ILA and its hardware finite-state machine (FSM) implementation. Further, this equivalence checking supports accelerator upgrades using the notion of ILA compatibility, similar to processor upgrades using ISA compatibility.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا