ترغب بنشر مسار تعليمي؟ اضغط هنا

A Note on Over-Smoothing for Graph Neural Networks

87   0   0.0 ( 0 )
 نشر من قبل Chen Cai
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Graph Neural Networks (GNNs) have achieved a lot of success on graph-structured data. However, it is observed that the performance of graph neural networks does not improve as the number of layers increases. This effect, known as over-smoothing, has been analyzed mostly in linear cases. In this paper, we build upon previous results cite{oono2019graph} to further analyze the over-smoothing effect in the general graph neural network architecture. We show when the weight matrix satisfies the conditions determined by the spectrum of augmented normalized Laplacian, the Dirichlet energy of embeddings will converge to zero, resulting in the loss of discriminative power. Using Dirichlet energy to measure expressiveness of embedding is conceptually clean; it leads to simpler proofs than cite{oono2019graph} and can handle more non-linearities.



قيم البحث

اقرأ أيضاً

Increasing the depth of GCN, which is expected to permit more expressivity, is shown to incur performance detriment especially on node classification. The main cause of this lies in over-smoothing. The over-smoothing issue drives the output of GCN to wards a space that contains limited distinguished information among nodes, leading to poor expressivity. Several works on refining the architecture of deep GCN have been proposed, but it is still unknown in theory whether or not these refinements are able to relieve over-smoothing. In this paper, we first theoretically analyze how general GCNs act with the increase in depth, including generic GCN, GCN with bias, ResGCN, and APPNP. We find that all these models are characterized by a universal process: all nodes converging to a cuboid. Upon this theorem, we propose DropEdge to alleviate over-smoothing by randomly removing a certain number of edges at each training epoch. Theoretically, DropEdge either reduces the convergence speed of over-smoothing or relieves the information loss caused by dimension collapse. Experimental evaluations on simulated dataset have visualized the difference in over-smoothing between different GCNs. Moreover, extensive experiments on several real benchmarks support that DropEdge consistently improves the performance on a variety of both shallow and deep GCNs.
364 - Lu Yu , Shichao Pei , Chuxu Zhang 2020
This paper studies learning node representations with GNNs for unsupervised scenarios. We make a theoretical understanding and empirical demonstration about the non-steady performance of GNNs over different graph datasets, when the supervision signal s are not appropriately defined. The performance of GNNs depends on both the node feature smoothness and the graph locality. To smooth the discrepancy of node proximity measured by graph topology and node feature, we proposed KS2L - a novel graph underline{K}nowledge distillation regularized underline{S}elf-underline{S}upervised underline{L}earning framework, with two complementary regularization modules, for intra-and cross-model graph knowledge distillation. We demonstrate the competitive performance of KS2L on a variety of benchmarks. Even with a single GCN layer, KS2L has consistently competitive or even better performance on various benchmark datasets.
113 - Deli Chen , Yankai Lin , Wei Li 2019
Graph Neural Networks (GNNs) have achieved promising performance on a wide range of graph-based tasks. Despite their success, one severe limitation of GNNs is the over-smoothing issue (indistinguishable representations of nodes in different classes). In this work, we present a systematic and quantitative study on the over-smoothing issue of GNNs. First, we introduce two quantitative metrics, MAD and MADGap, to measure the smoothness and over-smoothness of the graph nodes representations, respectively. Then, we verify that smoothing is the nature of GNNs and the critical factor leading to over-smoothness is the low information-to-noise ratio of the message received by the nodes, which is partially determined by the graph topology. Finally, we propose two methods to alleviate the over-smoothing issue from the topological view: (1) MADReg which adds a MADGap-based regularizer to the training objective;(2) AdaGraph which optimizes the graph topology based on the model predictions. Extensive experiments on 7 widely-used graph datasets with 10 typical GNN models show that the two proposed methods are effective for relieving the over-smoothing issue, thus improving the performance of various GNN models.
143 - Han Yang , Kaili Ma , James Cheng 2020
The graph Laplacian regularization term is usually used in semi-supervised representation learning to provide graph structure information for a model $f(X)$. However, with the recent popularity of graph neural networks (GNNs), directly encoding graph structure $A$ into a model, i.e., $f(A, X)$, has become the more common approach. While we show that graph Laplacian regularization brings little-to-no benefit to existing GNNs, and propose a simple but non-trivial variant of graph Laplacian regularization, called Propagation-regularization (P-reg), to boost the performance of existing GNN models. We provide formal analyses to show that P-reg not only infuses extra information (that is not captured by the traditional graph Laplacian regularization) into GNNs, but also has the capacity equivalent to an infinite-depth graph convolutional network. We demonstrate that P-reg can effectively boost the performance of existing GNN models on both node-level and graph-level tasks across many different datasets.
Data augmentation has been widely used to improve generalizability of machine learning models. However, comparatively little work studies data augmentation for graphs. This is largely due to the complex, non-Euclidean structure of graphs, which limit s possible manipulation operations. Augmentation operations commonly used in vision and language have no analogs for graphs. Our work studies graph data augmentation for graph neural networks (GNNs) in the context of improving semi-supervised node-classification. We discuss practical and theoretical motivations, considerations and strategies for graph data augmentation. Our work shows that neural edge predictors can effectively encode class-homophilic structure to promote intra-class edges and demote inter-class edges in given graph structure, and our main contribution introduces the GAug graph data augmentation framework, which leverages these insights to improve performance in GNN-based node classification via edge prediction. Extensive experiments on multiple benchmarks show that augmentation via GAug improves performance across GNN architectures and datasets.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا