ﻻ يوجد ملخص باللغة العربية
Graph Neural Networks (GNNs) have achieved a lot of success on graph-structured data. However, it is observed that the performance of graph neural networks does not improve as the number of layers increases. This effect, known as over-smoothing, has been analyzed mostly in linear cases. In this paper, we build upon previous results cite{oono2019graph} to further analyze the over-smoothing effect in the general graph neural network architecture. We show when the weight matrix satisfies the conditions determined by the spectrum of augmented normalized Laplacian, the Dirichlet energy of embeddings will converge to zero, resulting in the loss of discriminative power. Using Dirichlet energy to measure expressiveness of embedding is conceptually clean; it leads to simpler proofs than cite{oono2019graph} and can handle more non-linearities.
Increasing the depth of GCN, which is expected to permit more expressivity, is shown to incur performance detriment especially on node classification. The main cause of this lies in over-smoothing. The over-smoothing issue drives the output of GCN to
This paper studies learning node representations with GNNs for unsupervised scenarios. We make a theoretical understanding and empirical demonstration about the non-steady performance of GNNs over different graph datasets, when the supervision signal
Graph Neural Networks (GNNs) have achieved promising performance on a wide range of graph-based tasks. Despite their success, one severe limitation of GNNs is the over-smoothing issue (indistinguishable representations of nodes in different classes).
The graph Laplacian regularization term is usually used in semi-supervised representation learning to provide graph structure information for a model $f(X)$. However, with the recent popularity of graph neural networks (GNNs), directly encoding graph
Data augmentation has been widely used to improve generalizability of machine learning models. However, comparatively little work studies data augmentation for graphs. This is largely due to the complex, non-Euclidean structure of graphs, which limit