ترغب بنشر مسار تعليمي؟ اضغط هنا

Dynamic polarization of electron spins interacting with nuclei in semiconductor nanostructures

65   0   0.0 ( 0 )
 نشر من قبل Dmitry Smirnov S
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We suggest a new spin orientation mechanism for localized electrons: $dynamic~electron~spin~polarization~provided~by~nuclear~spin~fluctuations$. The angular momentum for the electrons is gained from the nuclear spin system via the hyperfine interaction in a weak magnetic field. For this the sample is illuminated by an unpolarized light, which directly polarizes neither the electrons nor the nuclei. We predict, that for the electrons bound in localized excitons 100% spin polarization can be reached in longitudinal magnetic fields of a few millitesla. The proof of principle experiment is performed on momentum-indirect excitons in (In,Al)As/AlAs quantum dots, where in a magnetic field of 17 mT the electron spin polarization of 30% is measured.



قيم البحث

اقرأ أيضاً

We polarize nuclear spins in a GaAs double quantum dot by controlling two-electron spin states near the anti-crossing of the singlet (S) and m_S=+1 triplet (T+) using pulsed gates. An initialized S state is cyclically brought into resonance with the T+ state, where hyperfine fields drive rapid rotations between S and T+, flipping an electron spin and flopping a nuclear spin. The resulting Overhauser field approaches 80 mT, in agreement with a simple rate-equation model. A self-limiting pulse sequence is developed that allows the steady-state nuclear polarization to be set using a gate voltage.
In high-purity n-type GaAs under strong magnetic field, we are able to isolate a lambda system composed of two Zeeman states of neutral-donor bound electrons and the lowest Zeeman state of bound excitons. When the two-photon detuning of this system i s zero, we observe a pronounced dip in the excited-state photoluminescence indicating the creation of the coherent population-trapped state. Our data are consistent with a steady-state three-level density-matrix model. The observation of coherent population trapping in GaAs indicates that this and similar semiconductor systems could be used for various EIT-type experiments.
We report magneto-absorption spectroscopy of gated WSe$_2$ monolayers in high magnetic fields up to 60~T. When doped with a 2D Fermi sea of mobile holes, well-resolved sequences of optical transitions are observed in both $sigma^pm$ circular polariza tions, which unambiguously and separately indicate the number of filled Landau levels (LLs) in both $K$ and $K$ valleys. This reveals the interaction-enhanced valley Zeeman energy, which is found to be highly tunable with hole density $p$. We exploit this tunability to align the LLs in $K$ and $K$, and find that the 2D hole gas becomes unstable against small changes in LL filling and can spontaneously valley-polarize. These results cannot be understood within a single-particle picture, highlighting the importance of exchange interactions in determining the ground state of 2D carriers in monolayer semiconductors.
Because of their long coherence times and potential for scalability, semiconductor quantum-dot spin qubits hold great promise for quantum information processing. However, maintaining high connectivity between quantum-dot spin qubits, which favor line ar arrays with nearest neighbor coupling, presents a challenge for large-scale quantum computing. In this work, we present evidence for long-distance spin-chain-mediated superexchange coupling between electron spin qubits in semiconductor quantum dots. We weakly couple two electron spins to the ends of a two-site spin chain. Depending on the spin state of the chain, we observe oscillations between the distant end spins. We resolve the dynamics of both the end spins and the chain itself, and our measurements agree with simulations. Superexchange is a promising technique to create long-distance coupling between quantum-dot spin qubits.
We report on theoretical and experimental study of the spin polarization recovery and Hanle effect for the charge carriers interacting with the fluctuating nuclear spins in the semiconductor structures. We start the theoretical description from the s implest model of static and isotropic nuclear spin fluctuations. Then we describe the modification of the polarization recovery and Hanle curves due to the anisotropy of the hyperfine interaction, finite nuclear spin correlation time, and the strong pulsed spin excitation. For the latter case, we describe the resonance spin amplification effect in the Faraday geometry and discuss the manifestations of the quantum Zeno effect. The set of the experimental results for various structures and experimental conditions is chosen to highlight the specific effects predicted theoretically. We show that the spin polarization recovery is a very valuable tool for addressing carrier spin dynamics in semiconductors and their nanostructures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا