ﻻ يوجد ملخص باللغة العربية
We present a procedure for quantizing complex projective spaces $mathbb{CP}^{p,q}$, $qge 1$, as well as construct relevant star products on these spaces. The quantization is made unique with the demand that it preserves the full isometry algebra of the metric. Although the isometry algebra, namely $su(p+1,q)$, is preserved by the quantization, the Killing vectors generating these isometries pick up quantum corrections. The quantization procedure is an extension of one applied recently to Euclidean $AdS_2$, where it was found that all quantum corrections to the Killing vectors vanish in the asymptotic limit, in addition to the result that the star product trivializes to pointwise product in the limit. In other words, the space is asymptotically anti-de Sitter making it a possible candidate for the $AdS/CFT$ correspondence principle. In this article, we find indications that the results for quantized Euclidean $AdS_2$ can be extended to quantized $mathbb{CP}^{p,q}$, i.e., noncommutativity is restricted to a limited neighborhood of some origin, and these quantum spaces approach $mathbb{CP}^{p,q}$ in the asymptotic limit.
In this paper, we consider a family of $n$-dimensional, higher-curvature theories of gravity whose action is given by a series of dimensionally extended conformal invariants. The latter correspond to higher-order generalizations of the Branson $Q$-cu
We study field theoretical models for cosmic (p,q)-superstrings in a curved space-time. We discuss both string solutions, i.e. solutions with a conical deficit, but also so-called Melvin solutions, which have a completely different asymptotic behavio
Conformal algebra on R x S^3 derived from quantized gravitational fields is examined. The model we study is a renormalizable quantum theory of gravity in four dimensions described by a combined system of the Weyl action for the traceless tensor mode
We generalize the coset procedure of homogeneous spacetimes in (pseudo-)Riemannian geometry to non-Lorentzian geometries. These are manifolds endowed with nowhere vanishing invertible vielbeins that transform under local non-Lorentzian tangent space
The present practice of Asymptotic Safety in gravity is in conflict with explicit calculations in low energy quantum gravity. This raises the question of whether the present practice meets the Weinberg condition for Asymptotic Safety. I argue, with e