ﻻ يوجد ملخص باللغة العربية
This article reviews how organisms learn and recognize the world through the dynamics of neural networks from the perspective of Bayesian inference, and introduces a view on how such dynamics is described by the laws for the entropy of neural activity, a paradigm that we call thermodynamics of the Bayesian brain. The Bayesian brain hypothesis sees the stimulus-evoked activity of neurons as an act of constructing the Bayesian posterior distribution based on the generative model of the external world that an organism possesses. A closer look at the stimulus-evoked activity at early sensory cortices reveals that feedforward connections initially mediate the stimulus-response, which is later modulated by input from recurrent connections. Importantly, not the initial response, but the delayed modulation expresses animals cognitive states such as awareness and attention regarding the stimulus. Using a simple generative model made of a spiking neural population, we reproduce the stimulus-evoked dynamics with the delayed feedback modulation as the process of the Bayesian inference that integrates the stimulus evidence and a prior knowledge with time-delay. We then introduce a thermodynamic view on this process based on the laws for the entropy of neural activity. This view elucidates that the process of the Bayesian inference works as the recently-proposed information-theoretic engine (neural engine, an analogue of a heat engine in thermodynamics), which allows us to quantify the perceptual capacity expressed in the delayed modulation in terms of entropy.
How do organisms recognize their environment by acquiring knowledge about the world, and what actions do they take based on this knowledge? This article examines hypotheses about organisms adaptation to the environment from machine learning, informat
The subject-verb-object (SVO) word order prevalent in English is shared by about $42%$ of world languages. Another $45%$ of all languages follow the SOV order, $9%$ the VSO order, and fewer languages use the three remaining permutations. None of the
The goal of the present study is to identify autism using machine learning techniques and resting-state brain imaging data, leveraging the temporal variability of the functional connections (FC) as the only information. We estimated and compared the
The wiring diagram of the mouse brain has recently been mapped at a mesoscopic scale in the Allen Mouse Brain Connectivity Atlas. Axonal projections from brain regions were traced using green fluoresent proteins. The resulting data were registered to
Given that many fundamental questions in neuroscience are still open, it seems pertinent to explore whether the brain might use other physical modalities than the ones that have been discovered so far. In particular it is well established that neuron