ﻻ يوجد ملخص باللغة العربية
In this work, we investigate the Earth-Moon system, as modeled by the planar circular restricted three-body problem, and relate its dynamical properties to the underlying structure associated with specific invariant manifolds. We consider a range of Jacobi constant values for which the neck around the Lagrangian point $L_1$ is always open but the orbits are bounded due to Hill stability. First, we show that the system displays three different dynamical scenarios in the neighborhood of the Moon: two mixed ones, with regular and chaotic orbits, and an almost entirely chaotic one in between. We then analyze the transitions between these scenarios using the Monodromy matrix theory and determine that they are given by two specific types of bifurcations. After that, we illustrate how the phase space configurations, particularly the shapes of stability regions and stickiness, are intrinsically related to the hyperbolic invariant manifolds of the Lyapunov orbits around $L_1$ and also to the ones of some particular unstable periodic orbits. Lastly, we define transit time in a manner that is useful to depict dynamical trapping and show that the traced geometrical structures are also connected to the transport properties of the system.
It is known that the asymptotic invariant manifolds around an unstable periodic orbit in conservative systems can be represented by convergent series (Cherry 1926, Moser 1956, 1958, Giorgilli 2001). The unstable and stable manifolds intersect at an i
We use the Smaller Alignment Index (SALI) to distinguish rapidly and with certainty between ordered and chaotic motion in Hamiltonian flows. This distinction is based on the different behavior of the SALI for the two cases: the index fluctuates aroun
Noise play a creative role in the evolution of periodic and complex systems which are essential for continuous performance of the system. The interaction of noise generated within one component of a chaotic system with other component in a linear or
This paper has been withdrawn due to an error in the proof of the main theorem.
Discrete fractional order chaotic systems extends the memory capability to capture the discrete nature of physical systems. In this research, the memristive discrete fractional order chaotic system is introduced. The dynamics of the system was studie