ترغب بنشر مسار تعليمي؟ اضغط هنا

An Introduction to Spin Wave Computing

159   0   0.0 ( 0 )
 نشر من قبل Christoph Adelmann
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper provides a tutorial overview over recent vigorous efforts to develop computing systems based on spin waves instead of charges and voltages. Spin-wave computing can be considered as a subfield of spintronics, which uses magnetic excitations for computation and memory applications. The tutorial combines backgrounds in spin-wave and device physics as well as circuit engineering to create synergies between the physics and electrical engineering communities to advance the field towards practical spin-wave circuits. After an introduction to magnetic interactions and spin-wave physics, all relevant basic aspects of spin-wave computing and individual spin-wave devices are reviewed. The focus is on spin-wave majority gates as they are the most prominently pursued device concept. Subsequently, we discuss the current status and the challenges to combine spin-wave gates and obtain circuits and ultimately computing systems, considering essential aspects such as gate interconnection, logic level restoration, input-output consistency, and fan-out achievement. We argue that spin-wave circuits need to be embedded in conventional CMOS circuits to obtain complete functional hybrid computing systems. The state of the art of benchmarking such hybrid spin-wave--CMOS systems is reviewed and the current challenges to realize such systems are discussed. The benchmark indicates that hybrid spin-wave--CMOS systems promise ultralow-power operation and may ultimately outperform conventional CMOS circuits in terms of the power-delay-area product. Current challenges to achieve this goal include low-power signal restoration in spin-wave circuits as well as efficient spin-wave transducers.



قيم البحث

اقرأ أيضاً

This book provides an introduction to the emerging field of quantum thermodynamics, with particular focus on its relation to quantum information and its implications for quantum computers and next generation quantum technologies. The text, aimed at g raduate level physics students with a working knowledge of quantum mechanics and statistical physics, provides a brief overview of the development of classical thermodynamics and its quantum formulation in Chapter 1. Chapter 2 then explores typical thermodynamic settings, such as cycles and work extraction protocols, when the working material is genuinely quantum. Finally, Chapter 3 explores the thermodynamics of quantum information processing and introduces the reader to some more state-of-the-art topics in this exciting and rapidly developing research field.
Spin-torque nano-oscillators can emulate neurons at the nanoscale. Recent works show that the non-linearity of their oscillation amplitude can be leveraged to achieve waveform classification for an input signal encoded in the amplitude of the input v oltage. Here we show that the frequency and the phase of the oscillator can also be used to recognize waveforms. For this purpose, we phase-lock the oscillator to the input waveform, which carries information in its modulated frequency. In this way we considerably decrease amplitude, phase and frequency noise. We show that this method allows classifying sine and square waveforms with an accuracy above 99% when decoding the output from the oscillator amplitude, phase or frequency. We find that recognition rates are directly related to the noise and non-linearity of each variable. These results prove that spin-torque nano-oscillators offer an interesting platform to implement different computing schemes leveraging their rich dynamical features.
Spin waves are excitations in ferromagnetic media that have been proposed as information carriers in hybrid spintronic devices with much lower operation power than conventional charge-based electronics. Their wave nature can be exploited in majority gates by using interference for computation. However, a scalable spin-wave majority gate that can be co-integrated alongside conventional electronics is still lacking. Here, we demonstrate a sub-micron inline spin-wave majority gate with fan-out. Time-resolved imaging of the magnetization dynamics by scanning transmission x-ray microscopy illustrates the device operation. All-electrical spin-wave spectroscopy further demonstrates majority gates with sub-micron dimensions, reconfigurable input and output ports, and frequency-division multiplexing. Challenges for hybrid spintronic computing systems based on spin-wave majority gates are discussed.
Xgrid is the first distributed computing architecture built into a desktop operating system. It allows you to run a single job across multiple computers at once. All you need is at least one Macintosh computer running Mac OS X v10.4 or later. (Mac OS X Server is not required.) We provide explicit instructions and example code to get you started, including examples of how to distribute your computing jobs, even if your initial cluster consists of just two old laptops in your basement.
95 - Zhen Li , Chao Luo , Tengteng Lu 2018
Cryogenic characterization and modeling of 0.18um CMOS technology (1.8V and 5V) are presented in this paper. Several PMOS and NMOS transistors with different width to length ratios(W/L) were extensively characterized under various bias conditions at temperatures ranging from 300K down to 4.2K. We extracted their fundamental physical parameters and developed a compact model based on BSIM3V3. In addition to their I-V characteristics, threshold voltage(Vth) values, on/off current ratio, transconductance of the MOS transistors, and resistors on chips are measured at temperatures from 300K down to 4.2K. A simple subcircuit was built to correct the kink effect. This work provides experimental evidence for implementation of cryogenic CMOS technology, a valid industrial tape-out process model, and romotes the application of integrated circuits in cryogenic environments, including quantum measurement and control systems for quantum chips at very low temperatures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا