ﻻ يوجد ملخص باللغة العربية
Based on the framework of multiple instance learning (MIL), tremendous works have promoted the advances of weakly supervised object detection (WSOD). However, most MIL-based methods tend to localize instances to their discriminative parts instead of the whole content. In this paper, we propose a spatial likelihood voting (SLV) module to converge the proposal localizing process without any bounding box annotations. Specifically, all region proposals in a given image play the role of voters every iteration during training, voting for the likelihood of each category in spatial dimensions. After dilating alignment on the area with large likelihood values, the voting results are regularized as bounding boxes, being used for the final classification and localization. Based on SLV, we further propose an end-to-end training framework for multi-task learning. The classification and localization tasks promote each other, which further improves the detection performance. Extensive experiments on the PASCAL VOC 2007 and 2012 datasets demonstrate the superior performance of SLV.
Significant performance improvement has been achieved for fully-supervised video salient object detection with the pixel-wise labeled training datasets, which are time-consuming and expensive to obtain. To relieve the burden of data annotation, we pr
Training object detectors with only image-level annotations is very challenging because the target objects are often surrounded by a large number of background clutters. Many existing approaches tackle this problem through object proposal mining. How
Weakly Supervised Object Detection (WSOD) has emerged as an effective tool to train object detectors using only the image-level category labels. However, without object-level labels, WSOD detectors are prone to detect bounding boxes on salient object
Weakly-Supervised Object Detection (WSOD) and Localization (WSOL), i.e., detecting multiple and single instances with bounding boxes in an image using image-level labels, are long-standing and challenging tasks in the CV community. With the success o
Salient object detection aims at detecting the most visually distinct objects and producing the corresponding masks. As the cost of pixel-level annotations is high, image tags are usually used as weak supervisions. However, an image tag can only be u