ﻻ يوجد ملخص باللغة العربية
Qubit state detection is an important part of a quantum computation. As number of qubits in a quantum register increases, it is necessary to maintain high fidelity detection to accurately measure the multi-qubit state. Here we present experimental demonstration of high-fidelity detection of a multi-qubit trapped ion register with average single qubit detection error of 4.2(1.5) ppm and a 4-qubit state detection error of 17(2) ppm, limited by the decay lifetime of the qubit, using a novel single-photon-sensitive camera with fast data collection, excellent temporal and spatial resolution, and low instrumental crosstalk.
We demonstrate single-shot qubit readout with fidelity sufficient for fault-tolerant quantum computation, for two types of qubit stored in single trapped calcium ions. For an optical qubit stored in the (4S_1/2, 3D_5/2) levels of 40Ca+ we achieve 99.
We demonstrate high-fidelity Zeeman qubit state detection in a single trapped 88 Sr+ ion. Qubit readout is performed by shelving one of the qubit states to a metastable level using a narrow linewidth diode laser at 674 nm followed by state-selective
Simultaneous measurement of multiple qubits stored in hyperfine levels of trapped 111Cd+ ions is realized with an intensified charge-coupled device (CCD) imager. A general theory of fluorescence detection for hyperfine qubits is presented and applied
We demonstrate the use of trapped ytterbium ions as quantum bits for quantum information processing. We implement fast, efficient state preparation and state detection of the first-order magnetic field-insensitive hyperfine levels of 171Yb+, with a m
We demonstrate laser-driven two-qubit and single-qubit logic gates with fidelities 99.9(1)% and 99.9934(3)% respectively, significantly above the approximately 99% minimum threshold level required for fault-tolerant quantum computation, using qubits