ترغب بنشر مسار تعليمي؟ اضغط هنا

Coherent WaveBurst, a pipeline for unmodeled gravitational-wave data analysis

105   0   0.0 ( 0 )
 نشر من قبل Francesco Salemi
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

coherent WaveBurst (cWB) is a highly configurable pipeline designed to detect a broad range of gravitational-wave (GW) transients in the data of the worldwide network of GW detectors. The algorithmic core of cWB is a time-frequency analysis with the Wilson-Daubechies-Meyer wavelets aimed at the identification of GW events without prior knowledge of the signal waveform. cWB has been in active development since 2003 and it has been used to analyze all scientific data collected by the LIGO-Virgo detectors ever since. On September 14, 2015, the cWB low-latency search detected the first gravitational-wave event, GW150914, a merger of two black holes. In 2019, a public open-source version of cWB has been released with GPLv3 license.



قيم البحث

اقرأ أيضاً

77 - Soumya D. Mohanty 2017
A method is described for the detection and estimation of transient chirp signals that are characterized by smoothly evolving, but otherwise unmodeled, amplitude envelopes and instantaneous frequencies. Such signals are particularly relevant for grav itational wave searches, where they may arise in a wide range of astrophysical scenarios. The method uses splines with continuously adjustable breakpoints to represent the amplitude envelope and instantaneous frequency of a signal, and estimates them from noisy data using penalized least squares and model selection. Simulations based on waveforms spanning a wide morphological range show that the method performs well in a signal-to-noise ratio regime where the time-frequency signature of a signal is highly degraded, thereby extending the coverage of current unmodeled gravitational wave searches to a wider class of signals.
Autonomous gravitational-wave searches -- fully automated analyses of data that run without human intervention or assistance -- are desirable for a number of reasons. They are necessary for the rapid identification of gravitational-wave burst candida tes, which in turn will allow for follow-up observations by other observatories and the maximum exploitation of their scientific potential. A fully automated analysis would also circumvent the traditional by hand setup and tuning of burst searches that is both labourious and time consuming. We demonstrate a fully automated search with X-Pipeline, a software package for the coherent analysis of data from networks of interferometers for detecting bursts associated with GRBs and other astrophysical triggers. We discuss the methods X-Pipeline uses for automated running, including background estimation, efficiency studies, unbiased optimal tuning of search thresholds, and prediction of upper limits. These are all done automatically via Monte Carlo with multiple independent data samples, and without requiring human intervention. As a demonstration of the power of this approach, we apply X-Pipeline to LIGO data to search for gravitational-wave emission associated with GRB 031108. We find that X-Pipeline is sensitive to signals approximately a factor of 2 weaker in amplitude than those detectable by the cross-correlation technique used in LIGO searches to date. We conclude with the prospects for running X-Pipeline as a fully autonomous, near real-time triggered burst search in the next LSC-Virgo Science Run.
Searches for gravitational wave bursts that are triggered by the observation of astronomical events require a different mode of analysis than all-sky, blind searches. For one, much more prior information is usually available in a triggered search whi ch can and should be used in the analysis. Second, since the data volume is usually small in a triggered search, it is also possible to use computationally more expensive algorithms for tasks such as data pre-processing that can consume significant computing resources in a high data-volume un-triggered search. From the statistical point of view, the reduction in the parameter space search volume leads to higher sensitivity than an un-triggered search. We describe here a data analysis pipeline for triggered searches, called {tt RIDGE}, and present preliminary results for simulated noise and signals.
Gravitational waves in the sensitivity band of ground-based detectors can be emitted by a number of astrophysical sources, including not only binary coalescences, but also individual spinning neutron stars. The most promising signals from such source s, although not yet detected, are long-lasting, quasi-monochromatic Continuous Waves (CWs). The PyFstat package provides tools to perform a range of CW data-analysis tasks. It revolves around the F-statistic, a matched-filter detection statistic for CW signals that has been one of the standard methods for LIGO-Virgo CW searches for two decades. PyFstat is built on top of established routines in LALSuite but through its more modern Python interface it enables a flexible approach to designing new search strategies. Hence, it serves a dual function of (i) making LALSuite CW functionality more easily accessible through a Python interface, thus facilitating the new user experience and, for developers, the exploratory implementation of novel methods; and (ii) providing a set of production-ready search classes for use cases not yet covered by LALSuite itself, most notably for MCMC-based followup of promising candidates from wide-parameter-space searches.
We describe updates and improvements to the BayesWave gravitational wave transient analysis pipeline, and provide examples of how the algorithm is used to analyze data from ground-based gravitational wave detectors. BayesWave models gravitational wav e signals in a morphology-independent manner through a sum of frame functions, such as Morlet-Gabor wavelets or chirplets. BayesWave models the instrument noise using a combination of a parametrized Gaussian noise component and non-stationary and non-Gaussian noise transients. Both the signal model and noise model employ trans-dimensional sampling, with the complexity of the model adapting to the requirements of the data. The flexibility of the algorithm makes it suitable for a variety of analyses, including reconstructing generic unmodeled signals; cross checks against modeled analyses for compact binaries; as well as separating coherent signals from incoherent instrumental noise transients (glitches). The BayesWave model has been extended to account for gravitational wave signals with generic polarization content and the simultaneous presence of signals and glitches in the data. We describe updates in the BayesWave prior distributions, sampling proposals, and burn-in stage that provide significantly improved sampling efficiency. We present standard review checks indicating the robustness and convergence of the BayesWave trans-dimensional sampler.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا