ﻻ يوجد ملخص باللغة العربية
We illustrate the ideas of bulk reconstruction in the context of random tensor network toy models of holography. Specifically, we demonstrate how the Petz reconstruction map works to obtain bulk operators from the boundary data by exploiting the replica trick. We also take the opportunity to comment on the differences between coarse-graining and random projections.
Quantum error correcting codes with finite-dimensional Hilbert spaces have yielded new insights on bulk reconstruction in AdS/CFT. In this paper, we give an explicit construction of a quantum error correcting code where the code and physical Hilbert
We consider the special case of Random Tensor Networks (RTN) endowed with gauge symmetry constraints on each tensor. We compute the R`enyi entropy for such states and recover the Ryu-Takayanagi (RT) formula in the large bond regime. The result provid
In this paper, we discuss tensor network descriptions of AdS/CFT from two different viewpoints. First, we start with an Euclidean path-integral computation of ground state wave functions with a UV cut off. We consider its efficient optimization by ma
We look at the interior operator reconstruction from the point of view of Petz map and study its complexity. We show that Petz maps can be written as precursors under the condition of perfect recovery. When we have the entire boundary system its comp
This paper accompanies with our recent work on quantum error correction (QEC) and entanglement spectrum (ES) in tensor networks (arXiv:1806.05007). We propose a general framework for planar tensor network state with tensor constraints as a model for