ترغب بنشر مسار تعليمي؟ اضغط هنا

What shapes feature representations? Exploring datasets, architectures, and training

80   0   0.0 ( 0 )
 نشر من قبل Andrew Lampinen
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

In naturalistic learning problems, a models input contains a wide range of features, some useful for the task at hand, and others not. Of the useful features, which ones does the model use? Of the task-irrelevant features, which ones does the model represent? Answers to these questions are important for understanding the basis of models decisions, as well as for building models that learn versatile, adaptable representations useful beyond the original training task. We study these questions using synthetic datasets in which the task-relevance of input features can be controlled directly. We find that when two features redundantly predict the labels, the model preferentially represents one, and its preference reflects what was most linearly decodable from the untrained model. Over training, task-relevant features are enhanced, and task-irrelevant features are partially suppressed. Interestingly, in some cases, an easier, weakly predictive feature can suppress a more strongly predictive, but more difficult one. Additionally, models trained to recognize both easy and hard features learn representations most similar to models that use only the easy feature. Further, easy features lead to more consistent representations across model runs than do hard features. Finally, models have greater representational similarity to an untrained model than to models trained on a different task. Our results highlight the complex processes that determine which features a model represents.



قيم البحث

اقرأ أيضاً

The potential for learned models to amplify existing societal biases has been broadly recognized. Fairness-aware classifier constraints, which apply equality metrics of performance across subgroups defined on sensitive attributes such as race and gen der, seek to rectify inequity but can yield non-uniform degradation in performance for skewed datasets. In certain domains, imbalanced degradation of performance can yield another form of unintentional bias. In the spirit of constructing fairness-aware algorithms as societal imperative, we explore an alternative: Pareto-Efficient Fairness (PEF). Theoretically, we prove that PEF identifies the operating point on the Pareto curve of subgroup performances closest to the fairness hyperplane, maximizing multiple subgroup accuracy. Empirically we demonstrate that PEF outperforms by achieving Pareto levels in accuracy for all subgroups compared to strict fairness constraints in several UCI datasets.
Graph neural networks (GNNs) are shown to be successful in modeling applications with graph structures. However, training an accurate GNN model requires a large collection of labeled data and expressive features, which might be inaccessible for some applications. To tackle this problem, we propose a pre-training framework that captures generic graph structural information that is transferable across tasks. Our framework can leverage the following three tasks: 1) denoising link reconstruction, 2) centrality score ranking, and 3) cluster preserving. The pre-training procedure can be conducted purely on the synthetic graphs, and the pre-trained GNN is then adapted for downstream applications. With the proposed pre-training procedure, the generic structural information is learned and preserved, thus the pre-trained GNN requires less amount of labeled data and fewer domain-specific features to achieve high performance on different downstream tasks. Comprehensive experiments demonstrate that our proposed framework can significantly enhance the performance of various tasks at the level of node, link, and graph.
Major complications arise from the recent increase in the amount of high-dimensional data, including high computational costs and memory requirements. Feature selection, which identifies the most relevant and informative attributes of a dataset, has been introduced as a solution to this problem. Most of the existing feature selection methods are computationally inefficient; inefficient algorithms lead to high energy consumption, which is not desirable for devices with limited computational and energy resources. In this paper, a novel and flexible method for unsupervised feature selection is proposed. This method, named QuickSelection, introduces the strength of the neuron in sparse neural networks as a criterion to measure the feature importance. This criterion, blended with sparsely connected denoising autoencoders trained with the sparse evolutionary training procedure, derives the importance of all input features simultaneously. We implement QuickSelection in a purely sparse manner as opposed to the typical approach of using a binary mask over connections to simulate sparsity. It results in a considerable speed increase and memory reduction. When tested on several benchmark datasets, including five low-dimensional and three high-dimensional datasets, the proposed method is able to achieve the best trade-off of classification and clustering accuracy, running time, and maximum memory usage, among widely used approaches for feature selection. Besides, our proposed method requires the least amount of energy among the state-of-the-art autoencoder-based feature selection methods.
It is widely believed that learning good representations is one of the main reasons for the success of deep neural networks. Although highly intuitive, there is a lack of theory and systematic approach quantitatively characterizing what representatio ns do deep neural networks learn. In this work, we move a tiny step towards a theory and better understanding of the representations. Specifically, we study a simpler problem: How similar are the representations learned by two networks with identical architecture but trained from different initializations. We develop a rigorous theory based on the neuron activation subspace match model. The theory gives a complete characterization of the structure of neuron activation subspace matches, where the core concepts are maximum match and simple match which describe the overall and the finest similarity between sets of neurons in two networks respectively. We also propose efficient algorithms to find the maximum match and simple matches. Finally, we conduct extensive experiments using our algorithms. Experimental results suggest that, surprisingly, representations learned by the same convolutional layers of networks trained from different initializations are not as similar as prevalently expected, at least in terms of subspace match.
(This paper was written in November 2011 and never published. It is posted on arXiv.org in its original form in June 2016). Many recent object recognition systems have proposed using a two phase training procedure to learn sparse convolutional featur e hierarchies: unsupervised pre-training followed by supervised fine-tuning. Recent results suggest that these methods provide little improvement over purely supervised systems when the appropriate nonlinearities are included. This paper presents an empirical exploration of the space of learning procedures for sparse convolutional networks to assess which method produces the best performance. In our study, we introduce an augmentation of the Predictive Sparse Decomposition method that includes a discriminative term (DPSD). We also introduce a new single phase supervised learning procedure that places an L1 penalty on the output state of each layer of the network. This forces the network to produce sparse codes without the expensive pre-training phase. Using DPSD with a new, complex predictor that incorporates lateral inhibition, combined with multi-scale feature pooling, and supervised refinement, the system achieves a 70.6% recognition rate on Caltech-101. With the addition of convolutional training, a 77% recognition was obtained on the CIfAR-10 dataset.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا