ﻻ يوجد ملخص باللغة العربية
In this paper, we apply two-to-one functions over $mathbb{F}_{2^n}$ in two generic constructions of binary linear codes. We consider two-to-one functions in two forms: (1) generalized quadratic functions; and (2) $left(x^{2^t}+xright)^e$ with $gcd(t, n)=1$ and $gcdleft(e, 2^n-1right)=1$. Based on the study of the Walsh transforms of those functions or their related-ones, we present many classes of linear codes with few nonzero weights, including one weight, three weights, four weights and five weights. The weight distributions of the proposed codes with one weight and with three weights are determined. In addition, we discuss the minimum distance of the dual of the constructed codes and show that some of them achieve the sphere packing bound. { Moreover, several examples show that some of our codes are optimal and some have the best known parameters.}
Linear codes have been an interesting topic in both theory and practice for many years. In this paper, a class of $q$-ary linear codes with few weights are presented and their weight distributions are determined using Gauss periods. Some of the linea
We prove that, for the binary erasure channel (BEC), the polar-coding paradigm gives rise to codes that not only approach the Shannon limit but do so under the best possible scaling of their block length as a~function of the gap to capacity. This res
The generalized Hamming weights of a linear code have been extensively studied since Wei first use them to characterize the cryptography performance of a linear code over the wire-tap channel of type II. In this paper, we investigate the generalized
Linear codes with a few weights have important applications in authentication codes, secret sharing, consumer electronics, etc.. The determination of the parameters such as Hamming weight distributions and complete weight enumerators of linear codes
Let $q=2^n$, $0leq kleq n-1$, $n/gcd(n,k)$ be odd and $k eq n/3, 2n/3$. In this paper the value distribution of following exponential sums [sumlimits_{xin bF_q}(-1)^{mathrm{Tr}_1^n(alpha x^{2^{2k}+1}+beta x^{2^k+1}+ga x)}quad(alpha,beta,gain bF_{q})]