ﻻ يوجد ملخص باللغة العربية
Solid-state qubits incorporating quantum dots can be read out by gate reflectometry. Here, we theoretically describe physical mechanisms that render such reflectometry-based readout schemes imperfect. We discuss charge qubits, singlet-triplet spin qubits, and Majorana qubits. In our model, we account for readout errors due to slow charge noise, and due to overdriving, when a too strong probe is causing errors. A key result is that for charge and spin qubits, the readout fidelity saturates at large probe strengths, whereas for Majorana qubits, there is an optimal probe strength which provides a maximized readout fidelity. We also point out the existence of severe readout errors appearing in a resonance-like fashion as the pulse strength is increased, and show that these errors are related to probe-induced multi-photon transitions. Besides providing practical guidelines toward optimized readout, our study might also inspire ways to use gate reflectometry for device characterization.
We study the time-dependent effect of Markovian readout processes on Majorana qubits whose parity degrees of freedom are converted into the charge of a tunnel-coupled quantum dot. By applying a recently established effective Lindbladian approximation
Gate-controlled silicon quantum devices are currently moving from academic proof-of-principle studies to industrial fabrication, while increasing their complexity from single- or double-dot devices to larger arrays. We perform gate-based high-frequen
Silicon spin qubits have emerged as a promising path to large-scale quantum processors. In this prospect, the development of scalable qubit readout schemes involving a minimal device overhead is a compelling step. Here we report the implementation of
Silicon spin qubits are promising candidates for realising large scale quantum processors, benefitting from a magnetically quiet host material and the prospects of leveraging the mature silicon device fabrication industry. We report the measurement o
Characterizing charge noise is of prime importance to the semiconductor spin qubit community. We analyze the echo amplitude data from a recent experiment [Yoneda et al., Nat. Nanotechnol. 13, 102 (2018)] and note that the data shows small but consist