ﻻ يوجد ملخص باللغة العربية
We perform a comprehensive study of The Higgs potential of the two Higgs doublet model extended by a real triplet scalar field $Delta$. This model, dubbed $2mathcal{HDM+T}$, has a rich Higgs spectrum consisting of three CP-even Higgs $h_{1,2,3}$, one CP-odd $A_0$ and two pairs of charged Higgs $H^pm_{1,2}$. First, we determine the perturbative unitarity constraints and a set of non trivial conditions for the boundedness from below (BFB). Then we derive the Veltman conditions by considering the quadratic divergencies of Higgs boson self energies in $2mathcal{HDM+T}$. We find that the parameter space is severely delimited by these theoretical constraints, as well as experimental exclusion limits and Higgs signal rate measurements at LEP and LHC. Using HiggsBounds-5.3.2beta and HiggSignals-2.2.3beta public codes an exclusion test at $2sigma$ is then performed on the physical scalars of $2mathcal{HDM+T}$. Our analysis provides a clear insight on the nonstandard scalar masses, showing that the allowed ranges are strongly sensitive to the sign of mixing angle $alpha_1$, essentially when naturalness is involved. For $alpha_1 < 0$ scenario, our results place higher limits on the bounds of all scalar masses, and show that the pairs $(h_2, H_1^pm)$ and $(h_3, H_2^pm)$ are nearly mass degenerate varying within the intervals $[130,,,246]$~GeV and $[160,,,335]$~GeV respectively. When $alpha_1$ turns positive, we show that consistency with theoretical constraints and current LHC data, essentially on the diphoton decay channel, favors Higgs masses varying within wide allowed ranges: $[153,,,973]$~GeV for $m_{A_0}$; $[151,,,928]$~GeV for ($m_{h_2}$, $m_{H_1^pm}$) and $[186,,,979]$~GeV for ($m_{h_3}$, $m_{H_2^pm}$). Finally, we find that the $gamma gamma$ and $Zgamma$ Higgs decay modes are generally correlated.
In models where an additional SU(2)-doublet that does not have couplings to fermions participates in electroweak symmetry breaking, the properties of the Higgs boson are changed. At tree level, in the neighborhood of the SM-like range of parameter sp
We consider extended scalar sectors of the Standard Model as ultraviolet-complete motivations for studying the effective Higgs self-interaction operators of the Standard Model effective field theory. We investigate all motivated heavy scalar models w
Real scalar triplet dark matter, which is known to be an attractive candidate for a thermal WIMP, is comprehensively studied paying particular attention to the Sommerfeld effect on the dark matter annihilation caused by the weak interaction and the o
Gauge singlet extensions of the Standard Model (SM) scalar sector may help remedy its theoretical and phenomenological shortcomings while solving outstanding problems in cosmology. Depending on the symmetries of the scalar potential, such extensions
We study the discovery potential of the non-Standard Model (SM) heavy Higgs bosons in the Two-Higgs-Doublet Models (2HDMs) at a multi-TeV muon collider and explore the discrimination power among different types of 2HDMs. We find that the pair product