ﻻ يوجد ملخص باللغة العربية
We improve on and generalize a 1960 result of Maltsev. For a field $F$, we denote by $H(F)$ the Heisenberg group with entries in $F$. Maltsev showed that there is a copy of $F$ defined in $H(F)$, using existential formulas with an arbitrary non-commuting pair $(u,v)$ as parameters. We show that $F$ is interpreted in $H(F)$ using computable $Sigma_1$ formulas with no parameters. We give two proofs. The first is an existence proof, relying on a result of Harrison-Trainor, Melnikov, R. Miller, and Montalban. This proof allows the possibility that the elements of $F$ are represented by tuples in $H(F)$ of no fixed arity. The second proof is direct, giving explicit finitary existential formulas that define the interpretation, with elements of $F$ represented by triples in $H(F)$. Looking at what was used to arrive at this parameter-free interpretation of $F$ in $H(F)$, we give general conditions sufficient to eliminate parameters from interpretations.
We characterize thorn-independence in a variety of structures, focusing on the field of real numbers expanded by predicate defining a dense multiplicative subgroup, G, satisfying the Mann property and whose pth powers are of finite index in G. We als
For simple theories with a strong version of amalgamation we obtain the canonical hyperdefinable group from the group configuration. This provides a generalization to simple theories of the group configuration theorem for stable theories.
We here revisit Fourier analysis on the Heisenberg group H^d. Whereas, according to the standard definition, the Fourier transform of an integrable function f on H^d is a one parameter family of bounded operators on L 2 (R^d), we define (by taking ad
Figurative language is ubiquitous in English. Yet, the vast majority of NLP research focuses on literal language. Existing text representations by design rely on compositionality, while figurative language is often non-compositional. In this paper, w
We work in a first-order setting where structures are spread out over a metric space, with quantification allowed only over bounded subsets. Assuming a doubling property for the metric space, we define a canonical {em core} $mathcal{J}$ associated to