ترغب بنشر مسار تعليمي؟ اضغط هنا

Emulating UAV Motion by Utilizing Robotic Arm for mmWave Wireless Channel Characterization

97   0   0.0 ( 0 )
 نشر من قبل Amit Kachroo
 تاريخ النشر 2020
  مجال البحث هندسة إلكترونية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, millimeter wave (mmWave) wireless channel characteristics (Doppler spread and path loss modeling) for Unmanned Aerial Vehicles (UAVs) assisted communication is analyzed and studied by emulating the real UAV motion using a robotic arm. The motion considers the actual turbulence caused by the wind gusts to the UAV in the atmosphere, which is statistically modeled by the widely used Dryden wind model. The frequency under consideration is 28 GHz in an anechoic chamber setting. A total of 11 distance points from 3.5 feet to 23.5 feet in increments of 2 feet were considered in this experiment. At each distance point, 3 samples of data were collected for better inference purposes. In this emulated environment, it was found out that the average Doppler spread at these different distances was around -20 Hz and +20 Hz at the noise floor of -60 dB. On the other hand, the path loss exponent was found to be 1.843. This study presents and lays out a novel framework of emulating UAV motion for mmWave communication systems, which will pave the way out for future design and implementation of next generation UAV-assisted wireless communication systems.



قيم البحث

اقرأ أيضاً

The integration of unmanned aerial vehicles (UAVs) into the terrestrial cellular networks is envisioned as one key technology for next-generation wireless communications. In this work, we consider the physical layer security of the communications lin ks in the millimeter-wave (mmWave) spectrum which are maintained by UAVs functioning as base stations (BS). In particular, we propose a new precoding strategy which incorporates the channel state information (CSI) of the eavesdropper (Eve) compromising link security. We show that our proposed precoder strategy eliminates any need for artificial noise (AN) transmission in underloaded scenarios (fewer users than number of antennas). In addition, we demonstrate that our nonlinear precoding scheme provides promising secrecy-rate performance even for overloaded scenarios at the expense of transmitting low-power AN.
Millimeter-wave rotary-wing (RW) unmanned aerial vehicle (UAV) air-to-ground (A2G) links face unpredictable Doppler effect arising from the inevitable wobbling of RW UAV. Moreover, the time-varying channel characteristics during transmission lead to inaccurate channel estimation, which in turn results in the deteriorated bit error probability performance of the UAV A2G link. This paper studies the impact of mechanical wobbling on the Doppler effect of the millimeter-wave wireless channel between a hovering RW UAV and a ground node. Our contributions of this paper lie in: i) modeling the wobbling process of a hovering RW UAV; ii) developing an analytical model to derive the channel temporal autocorrelation function (ACF) for the millimeter-wave RW UAV A2G link in a closed-form expression; and iii) investigating how RW UAV wobbling impacts the Doppler effect on the millimeter-wave RW UAV A2G link. Numerical results show that different RW UAV wobbling patterns impact the amplitude and the frequency of ACF oscillation in the millimeter-wave RW UAV A2G link. For UAV wobbling, the channel temporal ACF decreases quickly and the impact of the Doppler effect is significant on the millimeter-wave A2G link.
The deployment of unmanned aerial vehicles (UAVs) is proliferating as they are effective, flexible and cost-efficient devices for a variety of applications ranging from natural disaster recovery to delivery of goods. We investigate a transmission mec hanism aiming to improve the data rate between a base station (BS) and a user equipment through deploying multiple relaying UAVs. We consider the effect of interference, which is incurred by the nodes of another established communication network. Our primary goal is to design the 3D trajectories and power allocation for the UAVs to maximize the data flow while the interference constraint is met. The UAVs can reconfigure their locations to evade the unintended/intended interference caused by reckless/smart interferers. We also consider the scenario in which smart jammers chase the UAVs to degrade the communication quality. In this case, we investigate the problem from the perspective of both UAV network and smart jammers. An alternating-maximization approach is proposed to address the joint 3D trajectory design and power allocation problem. We handle the 3D trajectory design by resorting to spectral graph theory and subsequently address the power allocation through convex optimization techniques. Finally, we demonstrate the efficacy of our proposed method through simulations.
A reconfigurable intelligent surface (RIS) can shape the radio propagation by passively changing the directions of impinging electromagnetic waves. The optimal control of the RIS requires perfect channel state information (CSI) of all the links conne cting the base station (BS) and the mobile station (MS) via the RIS. Thereby the channel (parameter) estimation at the BS/MS and the related message feedback mechanism are needed. In this paper, we adopt a two-stage channel estimation scheme for the RIS-aided millimeter wave (mmWave) MIMO channels using an iterative reweighted method to sequentially estimate the channel parameters. We evaluate the average spectrum efficiency (SE) and the RIS beamforming gain of the proposed scheme and demonstrate that it achieves high-resolution estimation with the average SE comparable to that with perfect CSI.
This work considers unmanned aerial vehicle (UAV) networks for collecting data covertly from ground users. The full-duplex UAV intends to gather critical information from a scheduled user (SU) through wireless communication and generate artificial no ise (AN) with random transmit power in order to ensure a negligible probability of the SUs transmission being detected by the unscheduled users (USUs). To enhance the system performance, we jointly design the UAVs trajectory and its maximum AN transmit power together with the user scheduling strategy subject to practical constraints, e.g., a covertness constraint, which is explicitly determined by analyzing each USUs detection performance, and a binary constraint induced by user scheduling. The formulated design problem is a mixed-integer non-convex optimization problem, which is challenging to solve directly, but tackled by our developed penalty successive convex approximation (P-SCA) scheme. An efficient UAV trajectory initialization is also presented based on the Successive Hover-and-Fly (SHAF) trajectory, which also serves as a benchmark scheme. Our examination shows the developed P-SCA scheme significantly outperforms the benchmark scheme in terms of achieving a higher max-min average transmission rate from all the SUs to the UAV.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا