ﻻ يوجد ملخص باللغة العربية
The estimation of gravitational radiations multipole moments is a central problem in gravitational wave theory, with essential applications in gravitational wave signal modeling and data analysis. This problem is complicated by most astrophysically relevant systems not having angular modes that are analytically understood. A ubiquitous workaround is to use spin weighted spherical harmonics to estimate multipole moments; however, these are only related to the natural modes of non-spinning spacetimes, thus obscuring the behavior of radiative modes when the source has angular momentum. In such cases, radiative modes are spheroidal in nature. Here, common approaches to the estimation of spheroidal harmonic multipole moments are unified under a simple framework. This framework leads to a new class of spin weighted spheroidal harmonic functions. Adjoint-spheroidal harmonics are introduced and used to motivate the general estimation of spheroidal harmonic multipole moments via bi-orthogonal decomposition with overtone subsets. In turn, the adjoint-spheroidal harmonics are used to construct a single linear operator for which all spheroidal harmonics are eigenfunctions. Implications of these results on gravitational wave theory are discussed.
We provide a prescription to compute the gravitational multipole moments of compact objects for asymptotically de Sitter spacetimes. Our prescription builds upon a recent definition of the gravitational multipole moments in terms of Noether charges a
We transform the metric of an isolated matter source in the multipolar post-Minkowskian approximation from harmonic (de Donder) coordinates to radiative Newman-Unti (NU) coordinates. To linearized order, we obtain the NU metric as a functional of the
We compute the effect of scattering gravitational radiation off the static background curvature, up to second order in Newton constant, known in literature as tail and tail-of-tail processes, for generic electric and magnetic multipoles. Starting fro
As the Advanced LIGO and Advanced Virgo interferometers, soon to be joined by the KAGRA interferometer, increase their sensitivity, they detect an ever-larger number of gravitational waves with a significant presence of higher multipoles in addition
We study gravitational lensing by a generic extended mass distribution. For that, we consider the diffraction of electromagnetic (EM) waves by an extended, weakly aspherical, gravitating object. We account for the static gravitational field of this l