ﻻ يوجد ملخص باللغة العربية
In this article we show that in a three dimensional (3D) optical field there can exist two types of hidden singularities, one is spin density (SD) phase singularity and the other is SD vector singularity, which are both unique to 3D fields. The nature of these SD singularities is discussed and their connection with traditional optical singularities is also examined. Especially it is shown that in a 3D field with purely transverse spin density (`photonic wheels), these two types of singularities exhibit very interesting behaviors: they are exactly mapped to each other regardless of their different physical meanings and different topological structures. Our work supplies a fundamental theory for the SD singularities and may provide a new way for further exploration of 3D optical fields.
Chiral optical effects are generally quantified along some specific incident directions of exciting waves (especially for extrinsic chiralities of achiral structures) or defined as direction-independent properties by averaging the responses among all
Polarization singularities of vectorial electromagnetic fields locate at the positions (such as points, lines, or surfaces) where properties of polarization ellipses are not defined. They are manifested as circular and linear polarization, for which
Electromagnetic plane waves, solutions to Maxwells equations, are said to be `transverse in vacuum. Namely, the waves oscillatory electric and magnetic fields are confined within a plane transverse to the waves propagation direction. Under tight-focu
We describe a design methodology for modifying the refractive index profile of graded-index optical instruments that incorporate singularities or zeros in their refractive index. The process maintains the device performance whilst resulting in graded
Spatially inhomogeneous fields of electromagnetic guided modes exhibit a complex of extraordinary dynamical properties such as the polarization-dependent transverse momentum, helicity-independent transverse spin, spin-associated non-reciprocity and u