ترغب بنشر مسار تعليمي؟ اضغط هنا

SSHealth: Toward Secure, Blockchain-Enabled Healthcare Systems

74   0   0.0 ( 0 )
 نشر من قبل Alaa Awad Abdellatif
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The future of healthcare systems is being shaped by incorporating emerged technological innovations to drive new models for patient care. By acquiring, integrating, analyzing, and exchanging medical data at different system levels, new practices can be introduced, offering a radical improvement to healthcare services. This paper presents a novel smart and secure Healthcare system (ssHealth), which, leveraging advances in edge computing and blockchain technologies, permits epidemics discovering, remote monitoring, and fast emergency response. The proposed system also allows for secure medical data exchange among local healthcare entities, thus realizing the integration of multiple national and international entities and enabling the correlation of critical medical events for, e.g., emerging epidemics management and control. In particular, we develop a blockchain-based architecture and enable a flexible configuration thereof, which optimize medical data sharing between different health entities and fulfil the diverse levels of Quality of Service (QoS) that ssHealth may require. Finally, we highlight the benefits of the proposed ssHealth system and possible directions for future research.



قيم البحث

اقرأ أيضاً

281 - Neo C.K. Yiu 2021
Innovative solutions addressing product anti-counterfeiting and record provenance have been deployed across todays internationally spanning supply chain networks. These product anti-counterfeiting solutions are developed and implemented with centrali zed system architecture relying on centralized authorities or any form of intermediaries. Vulnerabilities of centralized product anti-counterfeiting solutions could possibly lead to system failure or susceptibility of malicious modifications performed on product records or various potential attacks to the system components by dishonest participant nodes traversing along the supply chain. Blockchain technology has progressed from merely with a use case of immutable ledger for cryptocurrency transactions to a programmable interactive environment of developing decentralized and reliable applications addressing different use cases globally. In this research, so as to facilitate trustworthy data provenance retrieval, verification and management, as well as strengthening capability of product anti-counterfeiting, key areas of decentralization and feasible mechanisms of developing decentralized and distributed product anti-counterfeiting and traceability ecosystems utilizing blockchain technology, are identified via a series of security and threat analyses performed mainly against NFC-Enabled Anti-Counterfeiting System (NAS) which is one of the solutions currently implemented in the industry with centralized architecture. A set of fundamental system requirements are set out for developing a blockchain-enabled autonomous and decentralized solution for supply chain anti-counterfeiting and traceability, as a secure and immutable scientific data provenance tracking and management platform in which provenance records, providing compelling properties on data integrity of luxurious goods, are recorded and verified automatically, for supply chain industry.
370 - Neo C.K. Yiu 2021
An interesting research problem in supply chain industry is evaluating and determining provenance of physical goods - demonstrating authenticity of luxury goods. Yet, there have been a few innovative software solutions addressing product anti-counter feiting and record provenance of todays goods that are produced and transported in complex and internationally-spanning supply chain networks. However, these supply chain systems have been implemented with centralized system architecture, relying on centralized authorities or any form of intermediaries, and leading to issues such as single-point processing, storage and failure, which could be susceptible to malicious modifications of product records or various potential attacks to system components by dishonest participant nodes traversing along the supply chain. Blockchain technology has evolved from being merely a decentralized, distributed and immutable ledger of cryptocurrency transactions to a programmable interactive environment for building decentralized and reliable applications addressing different use cases and existing problems in the world. In this research, the Decentralized NFC-Enabled Anti-Counterfeiting System (dNAS) is proposed and developed, decentralizing a legacy anti-counterfeiting system of supply chain industry using Blockchain technology, to facilitate trustworthy data provenance retrieval, verification and management, as well as strengthening capability of product anti-counterfeiting in supply chain industry. The proposed dNAS utilizes decentralized blockchain network on a consensus protocol compatible with the concept of enterprise consortium, programmable smart contracts and a distributed file storage system to develop a secure and immutable scientific data provenance tracking and management platform on which provenance records, providing compelling properties on data integrity, are validated automatically.
Electricity is an essential comfort to support our daily activities. With the competitive increase and energy costs by the industry, new values and opportunities for delivering electricity to customers are produced. One of these new opportunities is electric vehicles. With the arrival of electric vehicles, various challenges and opportunities are being presented in the electric power system worldwide. For example, under the traditional electric power billing scheme, electric power has to be consumed where it is needed so that end-users could not charge their electric vehicles at different points (e.g. a relatives house) if this the correct user is not billed (this due to the high consumption of electrical energy that makes it expensive). To achieve electric mobility, they must solve new challenges, such as the smart metering of energy consumption and the cybersecurity of these measurements. The present work shows a study of the different smart metering technologies that use blockchain and other security mechanisms to achieve e-mobility.
Advancement in artificial intelligence (AI) and machine learning (ML), dynamic data driven application systems (DDDAS), and hierarchical cloud-fog-edge computing paradigm provide opportunities for enhancing multi-domain systems performance. As one ex ample that represents multi-domain scenario, a fly-by-feel system utilizes DDDAS framework to support autonomous operations and improve maneuverability, safety and fuel efficiency. The DDDAS fly-by-feel avionics system can enhance multi-domain coordination to support domain specific operations. However, conventional enabling technologies rely on a centralized manner for data aggregation, sharing and security policy enforcement, and it incurs critical issues related to bottleneck of performance, data provenance and consistency. Inspired by the containerized microservices and blockchain technology, this paper introduces BLEM, a hybrid BLockchain-Enabled secure Microservices fabric to support decentralized, secure and efficient data fusion and multi-domain operations for avionics systems. Leveraging the fine-granularity and loose-coupling features of the microservices architecture, multidomain operations and security functionalities are decoupled into multiple containerized microservices. A hybrid blockchain fabric based on two-level committee consensus protocols is proposed to enable decentralized security architecture and support immutability, auditability and traceability for data provenience in existing multi-domain avionics system. Our evaluation results show the feasibility of the proposed BLEM mechanism to support decentralized security service and guarantee immutability, auditability and traceability for data provenience across domain boundaries.
In this paper, we propose FedChain, a novel framework for federated-blockchain systems, to enable effective transferring of tokens between different blockchain networks. Particularly, we first introduce a federated-blockchain system together with a c ross-chain transfer protocol to facilitate the secure and decentralized transfer of tokens between chains. We then develop a novel PoS-based consensus mechanism for FedChain, which can satisfy strict security requirements, prevent various blockchain-specific attacks, and achieve a more desirable performance compared to those of other existing consensus mechanisms. Moreover, a Stackelberg game model is developed to examine and address the problem of centralization in the FedChain system. Furthermore, the game model can enhance the security and performance of FedChain. By analyzing interactions between the stakeholders and chain operators, we can prove the uniqueness of the Stackelberg equilibrium and find the exact formula for this equilibrium. These results are especially important for the stakeholders to determine their best investment strategies and for the chain operators to design the optimal policy to maximize their benefits and security protection for FedChain. Simulations results then clearly show that the FedChain framework can help stakeholders to maximize their profits and the chain operators to design appropriate parameters to enhance FedChains security and performance.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا