ﻻ يوجد ملخص باللغة العربية
In the cold neutral medium, high out-of-equilibrium temperatures are created by intermittent dissipation processes, including shocks, viscous heating, and ambipolar diffusion. The high-temperature excursions are thought to explain the enhanced abundance of CH$^{+}$ observed along diffuse molecular sight-lines. Intermittent high temperatures should also have an impact on H$_2$ line luminosities. We carry out simulations of MHD turbulence in molecular clouds including heating and cooling, and post-process them to study H$_2$ line emission and hot-gas chemistry, particularly the formation of CH$^+$. We explore multiple magnetic field strengths and equations of state. We use a new H$_2$ cooling function for $n_{rm H} leq 10^5,{rm cm}^{-3}$, $Tleq 5000,{rm K}$, and variable H$_2$ fraction. We make two important simplifying assumptions: (i) the ${rm H}_2/{rm H}$ fraction is fixed everywhere, and (ii) we exclude from our analysis regions where the ion-neutral drift velocity is calculated to be greater than 5 km/s. Our models produce H$_2$ emission lines in accord with many observations, although extra excitation mechanisms are required in some clouds. For realistic r.m.s. magnetic field strengths ($approx 10$ $mu$G) and velocity dispersions, we reproduce observed CH$^+$ abundances. These findings contrast with those of Valdivia et al. (2017). Comparison of predicted dust polarization with observations by {it Planck} suggests that the mean field $gtrsim 5 mu$G, so that the turbulence is sub-Alfvenic. We recommend future work treating ions and neutrals as separate fluids to more accurately capture the effects of ambipolar diffusion on CH$^+$ abundance.
Supersonic turbulence results in strong density fluctuations in the interstellar medium (ISM), which have a profound effect on the chemical structure. Particularly useful probes of the diffuse ISM are the ArH$^+$, OH$^+$, H$_2$O$^+$ molecular ions, w
The modelling of emission spectra of molecules seen in interstellar clouds requires the knowledge of collisional rate coefficients. Among the commonly observed species, N$_2$H$^+$ is of particular interest since it was shown to be a good probe of the
Supersonic turbulence is a large reservoir of suprathermal energy in the interstellar medium. Its dissipation, because it is intermittent in space and time, can deeply modify the chemistry of the gas. We further explore a hybrid method to compute the
The transition from the diffuse warm neutral medium (WNM) to the dense cold neutral medium (CNM) is what set the initial conditions to the formation of molecular clouds. The properties of the turbulent cascade in the WNM, essential to describe this r
Dynamic and thermal processes regulate the structure of the multi-phase interstellar medium (ISM), and ultimately establish how galaxies evolve through star formation. Thus, to constrain ISM models and better understand the interplay of these process