ﻻ يوجد ملخص باللغة العربية
I review the application of self-consistent Greens functions methods to study the properties of infinite nuclear systems. Improvements over the last decade, including the consistent treatment of three-nucleon forces and the development of extrapolation methods from finite to zero temperature, have allowed for realistic predictions of the equation of state of infinite symmetric, asymmetric and neutron matter based on chiral interactions. Microscopic properties, like momentum distributions or spectral functions, are also accessible. Using an indicative set of results based on a subset of chiral interactions, I summarise here the first-principles description of infinite nuclear system provided by Greens functions techniques, in the context of several issues of relevance for nuclear theory including, but not limited to, the role of short-range correlations in nuclear systems, nuclear phase transitions and the isospin dependence of nuclear observables.
Nonequilibrium Greens functions represent underutilized means of studying the time evolution of quantum many-body systems. In view of a rising computer power, an effort is underway to apply the Greens functions formalism to the dynamics of central nu
We present calculations for symmetric nuclear matter using chiral nuclear interactions within the Self-Consistent Greens Functions approach in the ladder approximation. Three-body forces are included via effective one-body and two-body interactions,
An approach is outline to constructing an optical potential that includes the effects of antisymmetry and target recoil. it is based on the retarded Greens function, which could make it a better starting point for applications to direct nuclear react
The present thesis aims at studying the properties of symmetric nuclear and pure neutron matter from a Greens functions point of view, including two-body and three-body chiral forces. An extended self-consistent Greens function formalism is defined t
This paper is devoted to establishing the uniform estimates and asymptotic behaviors of the Greens functions $(G_varepsilon,Pi_varepsilon)$ (and fundamental solutions $(Gamma_varepsilon, Q_varepsilon)$) for the Stokes system with periodically oscilla