ﻻ يوجد ملخص باللغة العربية
Nowadays fairness issues have raised great concerns in decision-making systems. Various fairness notions have been proposed to measure the degree to which an algorithm is unfair. In practice, there frequently exist a certain set of variables we term as fair variables, which are pre-decision covariates such as users choices. The effects of fair variables are irrelevant in assessing the fairness of the decision support algorithm. We thus define conditional fairness as a more sound fairness metric by conditioning on the fairness variables. Given different prior knowledge of fair variables, we demonstrate that traditional fairness notations, such as demographic parity and equalized odds, are special cases of our conditional fairness notations. Moreover, we propose a Derivable Conditional Fairness Regularizer (DCFR), which can be integrated into any decision-making model, to track the trade-off between precision and fairness of algorithmic decision making. Specifically, an adversarial representation based conditional independence loss is proposed in our DCFR to measure the degree of unfairness. With extensive experiments on three real-world datasets, we demonstrate the advantages of our conditional fairness notation and DCFR.
Society increasingly relies on machine learning models for automated decision making. Yet, efficiency gains from automation have come paired with concern for algorithmic discrimination that can systematize inequality. Recent work has proposed optimal
Using the concept of principal stratification from the causal inference literature, we introduce a new notion of fairness, called principal fairness, for human and algorithmic decision-making. The key idea is that one should not discriminate among in
Machine Learning (ML) models trained on data from multiple demographic groups can inherit representation disparity (Hashimoto et al., 2018) that may exist in the data: the model may be less favorable to groups contributing less to the training proces
People are rated and ranked, towards algorithmic decision making in an increasing number of applications, typically based on machine learning. Research on how to incorporate fairness into such tasks has prevalently pursued the paradigm of group fairn
In membership/subscriber acquisition and retention, we sometimes need to recommend marketing content for multiple pages in sequence. Different from general sequential decision making process, the use cases have a simpler flow where customers per seei