ﻻ يوجد ملخص باللغة العربية
We perform a comparative magnetic study on two series of rare-earth (RE) based double perovskite iridates RE2BIrO6 (RE=Pr,Nd,Sm-Gd;B=Zn,Mg), which show Mott insulating state with tunable charge energy gap from ~330 meV to ~560 meV by changing RE cations. For nonmagnetic RE=Eu cations, Eu2MgIrO6 shows antiferromagnetic (AFM) order and field-induced spin-flop transitions below Neel temperature (TN) in comparison with the ferromagnetic (FM)-like behaviors of Eu2ZnIrO6 at low temperatures. For magnetic-moment-containing RE ions, Gd2BIrO6 show contrasting magnetic behaviors with FM-like transition (B=Zn) and AFM order (B=Mg), respectively. While, for RE=Pr, Nd and Sm ions, all members show AFM ground state and field-induced spin-flop transitions below TN irrespective of B=Zn or Mg cations. Moreover, two successive field-induced metamagnetic transitions are observed for RE2ZnIrO6 (RE=Pr,Nd) in high field up to 56 T, the resultant field temperature (H-T) phase diagrams are constructed. The diverse magnetic behaviors in RE2BIrO6 reveal that the 4f-Ir exchange interactions between the RE and Ir sublattices can mediate their magnetism.
In this work, we report on the synthesis and magnetic properties of a series of double perovskites Ln$_2$ZnIrO$_6$ with Ln = Nd, Sm, Eu & Gd. These compounds present new examples of the rare case of double perovskites (general formula A$_2$BBO$_6$) w
We have studied the thermal conductivity $kappa$ on single crystalline samples of the antiferromagnetic monolayer cuprates R$_2$CuO$_4$ with R = La, Pr, Nd, Sm, Eu, and Gd. For a heat current within the CuO$_2$ planes, i.e. for $kappa_{ab}$ we find h
New frustrated antiferromagnetic compounds CuRE2Ge2O8 (RE=Pr, Nd, Sm, Eu) have been investigated using high-resolution x-ray diffraction, magnetic and heat capacity measurements. These systems show different magnetic lattices depending on rare-earth
We present a systematic study of the structural and magnetic properties of two branches of the rare earth Tripod Kagome Lattice (TKL) family A$_{2}$RE$_{3}$Sb$_{3}$O$_{14}$ (A = Mg, Zn; RE = Pr, Nd, Gd, Tb, Dy, Ho, Er, Yb; here, we use abbreviation t
We report a comprehensive investigation of Ln2NiIrO6 (Ln = La, Pr, Nd) using thermodynamic and transport properties, neutron powder diffraction, resonant inelastic x-ray scattering, and density functional theory (DFT) calculations to investigate the