ﻻ يوجد ملخص باللغة العربية
As one of the largest B2C e-commerce platforms in China, JD com also powers a leading advertising system, serving millions of advertisers with fingertip connection to hundreds of millions of customers. In our system, as well as most e-commerce scenarios, ads are displayed with images.This makes visual-aware Click Through Rate (CTR) prediction of crucial importance to both business effectiveness and user experience. Existing algorithms usually extract visual features using off-the-shelf Convolutional Neural Networks (CNNs) and late fuse the visual and non-visual features for the finally predicted CTR. Despite being extensively studied, this field still face two key challenges. First, although encouraging progress has been made in offline studies, applying CNNs in real systems remains non-trivial, due to the strict requirements for efficient end-to-end training and low-latency online serving. Second, the off-the-shelf CNNs and late fusion architectures are suboptimal. Specifically, off-the-shelf CNNs were designed for classification thus never take categories as input features. While in e-commerce, categories are precisely labeled and contain abundant visual priors that will help the visual modeling. Unaware of the ad category, these CNNs may extract some unnecessary category-unrelated features, wasting CNNs limited expression ability. To overcome the two challenges, we propose Category-specific CNN (CSCNN) specially for CTR prediction. CSCNN early incorporates the category knowledge with a light-weighted attention-module on each convolutional layer. This enables CSCNN to extract expressive category-specific visual patterns that benefit the CTR prediction. Offline experiments on benchmark and a 10 billion scale real production dataset from JD, together with an Online A/B test show that CSCNN outperforms all compared state-of-the-art algorithms.
Click-through rate (CTR) prediction is one of the fundamental tasks for e-commerce search engines. As search becomes more personalized, it is necessary to capture the user interest from rich behavior data. Existing user behavior modeling algorithms d
The prediction of click-through rate (CTR) is crucial for industrial applications, such as online advertising. AUC is a commonly used evaluation indicator for CTR models. For advertising platforms, online performance is generally evaluated by CPM. Ho
As a critical component for online advertising and marking, click-through rate (CTR) prediction has draw lots of attentions from both industry and academia field. Recently, the deep learning has become the mainstream methodological choice for CTR. De
Trajectory owner prediction is the basis for many applications such as personalized recommendation, urban planning. Although much effort has been put on this topic, the results archived are still not good enough. Existing methods mainly employ RNNs t
We present a systematic investigation using graph neural networks (GNNs) to model organic chemical reactions. To do so, we prepared a dataset collection of four ubiquitous reactions from the organic chemistry literature. We evaluate seven different G