ترغب بنشر مسار تعليمي؟ اضغط هنا

Current-induced in-plane magnetization switching in biaxial ferrimagnetic insulator

138   0   0.0 ( 0 )
 نشر من قبل Cheng Song
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Ferrimagnetic insulators (FiMI) have been intensively used in microwave and magneto-optical devices as well as spin caloritronics, where their magnetization direction plays a fundamental role on the device performance. The magnetization is generally switched by applying external magnetic fields. Here we investigate current-induced spin-orbit torque (SOT) switching of the magnetization in Y3Fe5O12 (YIG)/Pt bilayers with in-plane magnetic anisotropy, where the switching is detected by spin Hall magnetoresistance. Reversible switching is found at room temperature for a threshold current density of 10^7 A cm^-2. The YIG sublattices with antiparallel and unequal magnetic moments are aligned parallel or antiparallel to the direction of current pulses, which is consistent to the Neel order switching in antiferromagnetic system. It is proposed that such a switching behavior may be triggered by the antidamping-torque acting on the two antiparallel sublattices of FiMI. Our finding not only broadens the magnetization switching by electrical means and promotes the understanding of magnetization switching, but also paves the way for all-electrically modulated microwave devices and spin caloritronics with low power consumption.



قيم البحث

اقرأ أيضاً

We investigated the effect of using a synthetic ferrimagnetic (SyF) free layer in MgO-based magnetic tunnel junctions (MTJs) on current-induced magnetization switching (CIMS), particularly for application to spin-transfer torque random access memory (SPRAM). The employed SyF free layer had a Co40Fe40B20/ Ru/ Co40Fe40B20 and Co20Fe60B20/Ru/Co20Fe60B20 structures, and the MTJs(100x(150-300) nm^2) were annealed at 300oC. The use of SyF free layer resulted in low intrinsic critical current density (Jc0) without degrading the thermal-stability factor (E/kBT, where E, kB, and T are the energy potential, the Boltzmann constant, and temperature,respectively). When the two CoFeB layers of a strongly antiferromagnetically coupled SyF free layer had the same thickness, Jc0 was reduced to 2-4x10^6 A/cm^2. This low Jc0 may be due to the decreased effective volume under the large spin accumulation at the CoFeB/Ru. The E/kBT was over 60, resulting in a retention time of over ten years and suppression of the write current dispersion for SPRAM. The use of the SyF free layer also resulted in a bistable (parallel/antiparallel) magnetization configuration at zero field, enabling the realization of CIMS without the need to apply external fields to compensate for the offset field.
148 - N. Theodoropoulou 2007
We test whether current-induced magnetization switching due to spin-transfer-torque in ferromagnetic/non-magnetic/ferromagnetic (F/N/F) trilayers changes significantly when scattering within the N-metal layers is changed from ballistic to diffusive. Here ballistic corresponds to a ratio r = lambda/t greater than or equal to 3 for a Cu spacer layer, and diffusive to r = lambda/t less than or equal to 0.4 for a CuGe alloy spacer layer, where lambda is the mean-free-path in the N-layer of fixed thickness t = 10 nm. The average switching currents for the alloy spacer layer are only modestly larger than those for Cu. The best available model predicts a much greater sensitivity of the switching currents to diffuse scattering in the spacer layer than we see.
We demonstrate spin-orbit torque (SOT) switching of amorphous CoTb single layer films with perpendicular magnetic anisotropy (PMA). The switching sustains even the film thickness is above 10 nm, where the critical switching current density keeps almo st constant. Without the need of overcoming the strong interfacial Dzyaloshinskii-Moriya interaction caused by the heavy metal, a quite low assistant field of ~20 Oe is sufficient to realize the fully switching. The SOT effective field decreases and undergoes a sign change with the decrease of the Tb-concentration, implying that a combination of the spin Hall effect from both Co and Tb as well as an asymmetric spin current absorption accounts for the SOT switching mechanism. Our findings would advance the use of magnetic materials with bulk PMA for energy-efficient and thermal-stable non-volatile memories, and add a different dimension for understanding the ordering and asymmetry in amorphous thin films.
We report the intrinsic critical current density (Jc0) in current-induced magnetization switching and the thermal stability factor (E/kBT, where E, kB, and T are the energy potential, the Boltzmann constant, and temperature, respectively) in MgO base d magnetic tunnel junctions with a Co40Fe40B20(2nm)/Ru(0.7-2.4nm)/Co40Fe40B20(2nm) synthetic ferrimagnetic (SyF) free layer. We show that Jc0 and E/kBT can be determined by analyzing the average critical current density as a function of coercivity using the Slonczewskis model taking into account thermal fluctuation. We find that high antiferromagnetic coupling between the two CoFeB layers in a SyF free layer results in reduced Jc0 without reducing high E/kBT.
271 - Zehan Chen , Lin Liu , Zhixiang Ye 2021
We report the first demonstration of the current-induced magnetization switching in a perpendicularly magnetized A1 CoPt single layer. We show that good perpendicular magnetic anisotropy can be obtained in a wide composition range of the A1 Co1-xPtx single layers, which allows to fabricate perpendicularly magnetized CoPt single layer with composition gradient to break the inversion symmetry of the structure. By fabricating the gradient CoPt single layer, we have evaluated the SOT efficiency and successfully realized the SOT-induced magnetization switching. Our study provides an approach to realize the current-induced magnetization in the ferromagnetic single layers without attaching SOT source materials.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا