ﻻ يوجد ملخص باللغة العربية
In this activity, students will make a working model of an atomic force microscope (AFM). A permanent magnet attached to a compact disc (CD) strip acts as the sensor. The sensor is attached to a base made from Legos. Laser light is reflected from the CD sensor and onto a sheet of photosensitive paper. An array of permanent magnets attached to cardboard acts as the atoms on a surface. When the sensor is brought near this atomic surface the magnets will deflect the sensor, which in turn deflects the reflected laser. This deflection is recorded on the photosensitive paper, which students can take home with them.
An atomic force microscope is used to structure a film of multilayer graphene. The resistance of the sample was measured in-situ during nanomachining a narrow trench. We found a reversible behavior in the electrical resistance which we attribute to t
We use an atomic force microscope (AFM) to manipulate graphene films on a nanoscopic length scale. By means of local anodic oxidation with an AFM we are able to structure isolating trenches into single-layer and few-layer graphene flakes, opening the
We present a fabrication method of superconducting quantum interference devices (SQUIDs) based on direct write lithography with an Atomic Force Microscope (AFM). This technique involves maskless local anodization of Nb or NbN ultrathin films using th
We consider an oscillator model to describe qualitatively friction force for an atomic force mi-croscope (AFM) tip driven on a surface described by periodic potential. It is shown that average value of the friction force could be controlled by applic
We present the design and implementation of a scanning probe microscope, which combines electrically detected magnetic resonance (EDMR) and (photo-)conductive atomic force microscopy ((p)cAFM). The integration of a 3-loop 2-gap X-band microwave reson