ﻻ يوجد ملخص باللغة العربية
We study partial homology and cohomology from ring theoretic point of view via the partial group algebra $mathbb{K}_{par}G$. In particular, we link the partial homology and cohomology of a group $G$ with coefficients in an irreducible (resp. indecomposable) $mathbb{K}_{par}G$-module with the ordinary homology and cohomology groups of $G$ with in general non-trivial coefficients. Furthermore, we compare the standard cohomological dimension $cd_{ mathbb{K}}(G)$ (over a field $mathbb{K}$) with the partial cohomological dimension $cd_{ mathbb{K}}^{par}(G)$ (over $mathbb{K}$) and show that $cd_{ mathbb{K}}^{par}(G) geq cd_{ mathbb{K}}(G)$ and that there is equality for $G = mathbb{Z}$.
Inner relations are derived between partial augmentations of certain elements (units or idempotents) in group rings.
Given a semilattice $X$ we study the algebraic properties of the semigroup $upsilon(X)$ of upfamilies on $X$. The semigroup $upsilon(X)$ contains the Stone-Cech extension $beta(X)$, the superextension $lambda(X)$, and the space of filters $phi(X)$ on
A weakly complete vector space over $mathbb{K}=mathbb{R}$ or $mathbb{K}=mathbb{C}$ is isomorphic to $mathbb{K}^X$ for some set $X$ algebraically and topologically. The significance of this type of topological vector spaces is illustrated by the fact
We prove that the cup product of $Delta$-decomposable quasimorphisms with any bounded cohomology class of arbitrary positive degree is trivial. As a corollary we obtain that this is also the case for Brooks quasimorphisms (in particular on selfoverlapping words) and Rolli quasimorphisms.
We show that the restricted Lie algebra structure on Hochschild cohomology is invariant under stable equivalences of Morita type between self-injective algebras. Thereby we obtain a number of positive characteristic stable invariants, such as the $p$