ترغب بنشر مسار تعليمي؟ اضغط هنا

About detecting very low mass black holes in LAr detectors

56   0   0.0 ( 0 )
 نشر من قبل Sorina Lazanu
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The nature of dark matter is still an open problem. The simplest assumption is that gravity is the only force coupled certainly to dark matter and thus the micro black holes could be a viable candidate. We investigated the possibility of direct detection of micro black holes with masses around and upward the Planck scale (10$^{-5}$ g), ensuring classical gravitational treatment of these objects in the next generation of huge LAr detectors. We show that the signals (ionization and scintillation) produced in LAr enable the discrimination between micro black holes or other particles. It is expected that the trajectories of these micro black holes will appear as crossing the whole active medium, in any direction, producing uniform ionization and scintillation on all the path.



قيم البحث

اقرأ أيضاً

277 - Himel Ghosh 2008
We demonstrate the feasibility of uncovering supermassive black holes in late-type, quiescent spiral galaxies by detecting signs of very low-level nuclear activity. We use a combination of x-ray selection and multi-wavelength follow-up. Here, we appl y this technique to NGC 3184 and NGC 5457, both of type Scd, and show that strong arguments can be made that both host AGNs.
We report the results of a weakly-interacting massive particle (WIMP) dark matter search using the full 80.1;live-day exposure of the first stage of the PandaX experiment (PandaX-I) located in the China Jin-Ping Underground Laboratory. The PandaX-I d etector has been optimized for detecting low-mass WIMPs, achieving a photon detection efficiency of 9.6%. With a fiducial liquid xenon target mass of 54.0,kg, no significant excess event were found above the expected background. A profile likelihood analysis confirms our earlier finding that the PandaX-I data disfavor all positive low-mass WIMP signals reported in the literature under standard assumptions. A stringent bound on the low mass WIMP is set at WIMP mass below 10,GeV/c$^2$, demonstrating that liquid xenon detectors can be competitive for low-mass WIMP searches.
In Advanced LIGO, detection and astrophysical source parameter estimation of the binary black hole merger GW150914 requires a calibrated estimate of the gravitational-wave strain sensed by the detectors. Producing an estimate from each detectors diff erential arm length control loop readout signals requires applying time domain filters, which are designed from a frequency domain model of the detectors gravitational-wave response. The gravitational-wave response model is determined by the detectors opto-mechanical response and the properties of its feedback control system. The measurements used to validate the model and characterize its uncertainty are derived primarily from a dedicated photon radiation pressure actuator, with cross-checks provided by optical and radio frequency references. We describe how the gravitational-wave readout signal is calibrated into equivalent gravitational-wave-induced strain and how the statistical uncertainties and systematic errors are assessed. Detector data collected over 38 calendar days, from September 12 to October 20, 2015, contain the event GW150914 and approximately 16 of coincident data used to estimate the event false alarm probability. The calibration uncertainty is less than 10% in magnitude and 10 degrees in phase across the relevant frequency band 20 Hz to 1 kHz.
311 - H.S. Lee , H. Bhang , J.H. Choi 2014
We present a search for low-mass ($leq 20 GeV/c^{2}$) weakly interacting massive particles(WIMPs), strong candidates of dark matter particles,using the low-background CsI(Tl) detector array of the Korea Invisible Mass Search (KIMS) experiment. With a total data exposure of 24,324.3kg$cdot$days,we search for WIMP interaction signals produced by nuclei recoiling from WIMP-nuclear elastic scattering with visible energies between 2 and 4keV. The observed energy distribution of candidate events is consistent with null signals, and upper limits of the WIMP-proton spin-independent interaction are set with a 90% confidence level. The observed limit rejects most of the low mass region of parameter space favored by the DAMA annual modulation signal.
We report a first search for weakly interacting massive particles (WIMPs) using the background rejection capabilities of SuperCDMS. An exposure of 577 kg-days was analyzed for WIMPs with mass < 30 GeV/c2, with the signal region blinded. Eleven events were observed after unblinding. We set an upper limit on the spin-independent WIMP-nucleon cross section of 1.2e-42 cm2 at 8 GeV/c2. This result is in tension with WIMP interpretations of recent experiments and probes new parameter space for WIMP-nucleon scattering for WIMP masses < 6 GeV/c2.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا