ﻻ يوجد ملخص باللغة العربية
A popular approach to learning encoders for lossy compression is to use additive uniform noise during training as a differentiable approximation to test-time quantization. We demonstrate that a uniform noise channel can also be implemented at test time using universal quantization (Ziv, 1985). This allows us to eliminate the mismatch between training and test phases while maintaining a completely differentiable loss function. Implementing the uniform noise channel is a special case of the more general problem of communicating a sample, which we prove is computationally hard if we do not make assumptions about its distribution. However, the uniform special case is efficient as well as easy to implement and thus of great interest from a practical point of view. Finally, we show that quantization can be obtained as a limiting case of a soft quantizer applied to the uniform noise channel, bridging compression with and without quantization.
We introduce a simple recurrent variational auto-encoder architecture that significantly improves image modeling. The system represents the state-of-the-art in latent variable models for both the ImageNet and Omniglot datasets. We show that it natura
We present a machine learning-based approach to lossy image compression which outperforms all existing codecs, while running in real-time. Our algorithm typically produces files 2.5 times smaller than JPEG and JPEG 2000, 2 times smaller than WebP,
We propose a new approach to the problem of optimizing autoencoders for lossy image compression. New media formats, changing hardware technology, as well as diverse requirements and content types create a need for compression algorithms which are mor
We propose a very simple and efficient video compression framework that only focuses on modeling the conditional entropy between frames. Unlike prior learning-based approaches, we reduce complexity by not performing any form of explicit transformatio
We present a self-contained system for constructing natural language models for use in text compression. Our system improves upon previous neural network based models by utilizing recent advances in syntactic parsing -- Googles SyntaxNet -- to augmen