ﻻ يوجد ملخص باللغة العربية
We describe the disappearance of a sector of sunspot penumbra and its restoring process observed in the preceding sunspot of active region NOAA 12348. The evolution of the magnetic field and the plasma flows support the idea that the penumbra forms due to a change of inclination of the magnetic field of the canopy. Moving magnetic features have been observed during the disintegration phase of that sector of sunspot penumbra. During the restoring phase we have not observed any magnetic flux emergence around the sunspot. The restoring process of the penumbra sector completed in about 72 hours and it was accompanied by the transition from the counter-Evershed flow to the classical Evershed flow. The inversion of photospheric spectropolarimetric measurements taken by IBIS allowed us to reconstruct how the uncombed configuration of the magnetic field forms during the new settlement of the penumbra, i.e., the vertical component of the magnetic field seems to be progressively replaced by some horizontal field lines, corresponding to the intra-spines.
Penumbral Microjets (PMJs) are short-lived jets found in the penumbra of sunspots, first observed in wide-band Ca H-line observations as localized brightenings, and are thought to be caused by magnetic reconnection. Earlier work on PMJs has been focu
The fine-structure of magnetic field of a sunspot penumbra in the upper chromosphere is to be explored and compared to that in the photosphere. High spatial resolution spectropolarimetric observations were recorded with the 1.5-meter GREGOR telescope
Using high-resolution spectropolarimetric data acquired by textit{IBIS}, as well as textit{SDO}/HMI observations, we studied the penumbra formation in AR NOAA 11490 and in a sample of twelve ARs appeared on the solar disk on 2011 and 2012, which were
The penumbra is ideally suited to challenge our understanding of magnetohydrodynamics. The energy transport takes place as magnetoconvection in inclined magnetic fields under the effect of strong radiative cooling at the surface. The relevant process
Recent numerical simulations and observations of sunspots show a significant amount of opposite polarity magnetic field within the sunspot penumbra. Most of the opposite polarity field is associated with convective downflows. We present an analysis o