ﻻ يوجد ملخص باللغة العربية
We present a comparison study of state-of-the-art classical optimisation methods to a D-Wave 2000Q quantum annealer for the planning of Earth observation missions. The problem is to acquire high value images while obeying the attitude manoeuvring constraint of the satellite. In order to investigate close to real-world problems, we created benchmark problems by simulating realistic scenarios. Our results show that a tuned quantum annealing approach can run faster than a classical exact solver for some of the problem instances. Moreover, we find that the solution quality of the quantum annealer is comparable to the heuristic method used operationally for small problem instances, but degrades rapidly due to the limited precision of the quantum annealer.
Optimal flight gate assignment is a highly relevant optimization problem from airport management. Among others, an important goal is the minimization of the total transit time of the passengers. The corresponding objective function is quadratic in th
We perform an in-depth comparison of quantum annealing with several classical optimisation techniques, namely thermal annealing, Nelder-Mead, and gradient descent. We begin with a direct study of the 2D Ising model on a quantum annealer, and compare
We investigate the occurrence of the phenomenon of many-body localization (MBL) on a D-Wave 2000Q programmable quantum annealer. We study a spin-1/2 transverse-field Ising model defined on a Chimera connectivity graph, with random exchange interactio
The application in cryptography of quantum algorithms for prime factorization fostered the interest in quantum computing. However, quantum computers, and particularly quantum annealers, can also be helpful to construct secure cryptographic keys. Inde
The Earth observation satellites (EOSs) are specially designed to collect images according to user requirements. The agile EOSs (AEOS), with stronger attitude maneuverability, greatly improve the observation capability, while increasing the complexit