ﻻ يوجد ملخص باللغة العربية
We consider two generalizations of the classical weighted paging problem that incorporate the notion of delayed service of page requests. The first is the (weighted) Paging with Time Windows (PageTW) problem, which is like the classical weighted paging problem except that each page request only needs to be served before a given deadline. This problem arises in many practical applications of online caching, such as the deadline I/O scheduler in the Linux kernel and video-on-demand streaming. The second, and more general, problem is the (weighted) Paging with Delay (PageD) problem, where the delay in serving a page request results in a penalty being assessed to the objective. This problem generalizes the caching problem to allow delayed service, a line of work that has recently gained traction in online algorithms (e.g., Emek et al. STOC 16, Azar et al. STOC 17, Azar and Touitou FOCS 19). We give $O(log klog n)$-competitive algorithms for both the PageTW and PageD problems on $n$ pages with a cache of size $k$. This significantly improves on the previous best bounds of $O(k)$ for both problems (Azar et al. STOC 17). We also consider the offline PageTW and PageD problems, for which we give $O(1)$ approximation algorithms and prove APX-hardness. These are the first results for the offline problems; even NP-hardness was not known before our work. At the heart of our algorithms is a novel hitting-set LP relaxation of the PageTW problem that overcomes the $Omega(k)$ integrality gap of the natural LP for the problem. To the best of our knowledge, this is the first example of an LP-based algorithm for an online algorithm with delays/deadlines.
We study an online hypergraph matching problem with delays, motivated by ridesharing applications. In this model, users enter a marketplace sequentially, and are willing to wait up to $d$ timesteps to be matched, after which they will leave the syste
We consider the classic problem of scheduling jobs with precedence constraints on identical machines to minimize makespan, in the presence of communication delays. In this setting, denoted by $mathsf{P} mid mathsf{prec}, c mid C_{mathsf{max}}$, if tw
Caches are a fundamental component of latency-sensitive computer systems. Recent work of [ASWB20] has initiated the study of delayed hits: a phenomenon in caches that occurs when the latency between the cache and backing store is much larger than the
In this paper, we study $k$-Way Min-cost Perfect Matching with Delays - the $k$-MPMD problem. This problem considers a metric space with $n$ nodes. Requests arrive at these nodes in an online fashion. The task is to match these requests into sets of
We initiate the study of a natural and practically relevant new variant of online caching where the to-be-cached items can have dependencies. We assume that the universe is a tree T and items are tree nodes; we require that if a node v is cached then