ﻻ يوجد ملخص باللغة العربية
State-of-the-art deep networks are often too large to deploy on mobile devices and embedded systems. Mobile neural architecture search (NAS) methods automate the design of small models but state-of-the-art NAS methods are expensive to run. Differentiable neural architecture search (DNAS) methods reduce the search cost but explore a limited subspace of candidate architectures. In this paper, we introduce Fine-Grained Stochastic Architecture Search (FiGS), a differentiable search method that searches over a much larger set of candidate architectures. FiGS simultaneously selects and modifies operators in the search space by applying a structured sparse regularization penalty based on the Logistic-Sigmoid distribution. We show results across 3 existing search spaces, matching or outperforming the original search algorithms and producing state-of-the-art parameter-efficient models on ImageNet (e.g., 75.4% top-1 with 2.6M params). Using our architectures as backbones for object detection with SSDLite, we achieve significantly higher mAP on COCO (e.g., 25.8 with 3.0M params) than MobileNetV3 and MnasNet.
Recently there are a considerable amount of work devoted to the study of the algorithmic stability and generalization for stochastic gradient descent (SGD). However, the existing stability analysis requires to impose restrictive assumptions on the bo
Search space design is very critical to neural architecture search (NAS) algorithms. We propose a fine-grained search space comprised of atomic blocks, a minimal search unit that is much smaller than the ones used in recent NAS algorithms. This searc
We propose Stochastic Neural Architecture Search (SNAS), an economical end-to-end solution to Neural Architecture Search (NAS) that trains neural operation parameters and architecture distribution parameters in same round of back-propagation, while m
In machine learning we often encounter structured output prediction problems (SOPPs), i.e. problems where the output space admits a rich internal structure. Application domains where SOPPs naturally occur include natural language processing, speech r
Multi-graph multi-label learning (textsc{Mgml}) is a supervised learning framework, which aims to learn a multi-label classifier from a set of labeled bags each containing a number of graphs. Prior techniques on the textsc{Mgml} are developed based o