ترغب بنشر مسار تعليمي؟ اضغط هنا

Observation of tunable single-atom Yu-Shiba-Rusinov states

100   0   0.0 ( 0 )
 نشر من قبل Artem Odobesko
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The coupling of a spin to an underlying substrate is the basis for a plethora of phenomena. In the case of a metallic substrate, Kondo screening of the adatom magnetic moment can occur. As the substrate turns superconducting, an intriguing situation emerges where the pair breaking due to the adatom spins leads to Yu-Shiba-Rusinov bound states, but also intertwines with Kondo phenomena. Through scanning tunneling spectroscopy, we analyze the interdependence of Kondo screening and superconductivity. Our data obtained on single Fe adatoms on Nb(110) show that the coupling and the resulting YSR states are strongly adsorption site-dependent and reveal a quantum phase transition at a Kondo temperature comparable to the superconducting gap. The experimental signatures are rationalized by combined density functional theory and continuous-time quantum Monte-Carlo calculations to rigorously treat magnetic and hybridization effects on equal footing.



قيم البحث

اقرأ أيضاً

When magnetic atoms are inserted inside a superconductor, the superconducting order is locally depleted as a result of the antagonistic nature of magnetism and superconductivity1. Thereby, distinctive spectral features, known as Yu-Shiba-Rusinov stat es, appear inside the superconducting gap2-4. The search for Yu-Shiba-Rusinov states in different materials is intense, as they can be used as building blocks to promote Majorana modes5 suitable for topological quantum computing6. Here we report the first realization of Yu-Shiba-Rusinov states in graphene, a non-superconducting 2D material, and without the participation of magnetic atoms. We induce superconductivity in graphene by proximity effect7-9 brought by adsorbing nanometer scale superconducting Pb islands. Using scanning tunneling microscopy and spectroscopy we measure the superconducting proximity gap in graphene and we visualize Yu-Shiba-Rusinov states in graphene grain boundaries. Our results reveal the very special nature of those Yu-Shiba-Rusinov states, which extends more than 20 nm away from the grain boundaries. These observations provide the long sought experimental confirmation that graphene grain boundaries host local magnetic moments10-14 and constitute the first observation of Yu-Shiba-Rusinov states in a chemically pure system.
Yu-Shiba-Rusinov (YSR) bound states appear when a magnetic atom interacts with a superconductor. Here, we report on spin-resolved spectroscopic studies of YSR states related with Fe atoms deposited on the surface of the topological superconductor FeT e0.55Se0.45 using a spin-polarized scanning tunneling microscope. We clearly identify the spin signature of pairs of YSR bound states at finite energies within the superconducting gap having opposite spin polarization as theoretically predicted. In addition, we also observe zero-energy bound states for some of the adsorbed Fe atoms. In this case, a spin signature is found to be absent indicating the absence of Majorana bound states associated with Fe adatoms on FeTe0.55Se0.45.
Theoretical descriptions of Yu-Shiba-Rusinov (YSR) states induced by magnetic impurities inside the gap of a superconductor typically rely on a classical spin model or are restricted to spin-1/2 quantum spins. These models fail to account for importa nt aspects of YSR states induced by transition-metal impurities, including the effects of higher quantum spins coupled to several conduction-electron channels, crystal or ligand-field effects, and magnetic anisotropy. We introduce and explore a zero-bandwidth model, which incorporates these aspects, is readily solved numerically, and analytically tractable in several limiting cases. The principal simplification of the model is to neglect Kondo renormalizations of the exchange couplings between impurity spin and conduction electrons. Nevertheless, we find excellent correspondence in those cases, in which we can compare our results to existing numerical-renormalization-group calculations. We apply the model to obtain and understand phase diagrams as a function of pairing strength and magnetic anisotropy as well as subgap excitation spectra. The single-channel case is most relevant for transition-metal impurities embedded into metallic coordination complexes on superconducting substrates, while the multi-channel case models transition-metal adatoms.
We have implemented the Bogoliubov-de Gennes (BdG) equation in a screened Korringa-Kohn- Rostoker (KKR) method for solving, self-consistently, the superconducting state for 3d crystals including substitutional impurities. In this report we extend thi s theoretical framework to allow for collinear magnetism and apply it to fcc Pb with 3d magnetic impurities. In the presence of magnetic impurities, there is a pair-breaking effect that results in sup-gap Yu-Shiba-Rusinov (YSR) states which we decompose into contributions from the individual orbital character. We determine the spatial extent of these impurity states, showing how the different orbital character affects the details of the YSR states within the superconducting gap. Our work highlights the importance of the first principles based description which captures the quantitative details making direct comparisons possible with experimental findings.
There is presently a tremendous activity around the field of topological superconductivity and Majorana fermions. Among the many questions raised, it has become increasingly important to establish the topological or non-topological origin of features associated with Majorana fermions such as zero-bias peaks. Here, we compare in-gap features associated either with isolated magnetic impurities or with magnetic clusters strongly coupled to the atomically thin superconductor Pb/Si(111). We study this system by means of scanning tunneling microscopy and spectroscopy (STM/STS). We take advantage of the fact that the Pb/Si(111) monolayer can exist either in a crystal-ordered phase or in an incommensurate disordered phase to compare the observed spectroscopic features in both phases. This allows us to demonstrate that the strongly resolved in-gap states we found around the magnetic clusters in the disordered phase of Pb have a clear topological origin.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا