ﻻ يوجد ملخص باللغة العربية
A tidal disruption event (TDE) occurs when a star plunges through a supermassive black holes tidal radius, at which point the stars self-gravity is overwhelmed by the tidal gravity of the black hole. In a partial TDE, where the star does not reach the full disruption radius, only a fraction of the stars mass is tidally stripped while the rest remains intact in the form of a surviving core. Analytical arguments have recently suggested that the temporal scaling of the fallback rate of debris to the black hole asymptotes to $t^{-9/4}$ for partial disruptions, effectively independently of the mass of the intact core. We present hydrodynamical simulations that verify the existence of this predicted, $t^{-9/4}$ scaling. We also define a break timescale -- the time at which the fallback rate transitions from a $t^{-5/3}$ scaling to the characteristic $t^{-9/4}$ scaling -- and measure this break timescale as a function of the impact parameter and the surviving core mass. These results deepen our understanding of the properties and breadth of possible fallback curves expected from TDEs and will therefore facilitate more accurate interpretation of data from wide-field surveys.
Tidal disruption events are an excellent probe for supermassive black holes in distant inactive galaxies because they show bright multi-wavelength flares lasting several months to years. AT2019dsg presents the first potential association with neutrino emission from such an explosive event.
Recent claimed detections of tidal disruption events (TDEs) in multi-wavelength data have opened potential new windows into the evolution and properties of otherwise dormant supermassive black holes (SMBHs) in the centres of galaxies. At present, the
We present the STARS library, a grid of tidal disruption event (TDE) simulations interpolated to provide the mass fallback rate ($dM/dt$) to the black hole for a main-sequence star of any stellar mass, stellar age, and impact parameter. We use a one-
Tidal disruption events occur rarely in any individual galaxy. Over the last decade, however, time-domain surveys have begun to accumulate statistical samples of these flares. What dynamical processes are responsible for feeding stars to supermassive
The discovery of jets from tidal disruption events (TDEs) rejuvenated the old field of relativistic jets powered by accretion onto supermassive black holes. In this Chapter, we first review the extensive multi-wavelength observations of jetted TDEs.