ﻻ يوجد ملخص باللغة العربية
We analyse topological orbifold conformal field theories on the symmetric product of a complex surface M. By exploiting the mathematics literature we show that a canonical quotient of the operator ring has structure constants given by Hurwitz numbers. This proves a conjecture in the physics literature on extremal correlators. Moreover, it allows to leverage results on the combinatorics of the symmetric group to compute more structure constants explicitly. We recall that the full orbifold chiral ring is given by a symmetric orbifold Frobenius algebra. This construction enables the computation of topological genus zero and genus one correlators, and to prove the vanishing of higher genus contributions. The efficient description of all topological correlators sets the stage for a proof of a topological AdS/CFT correspondence. Indeed, we propose a concrete mathematical incarnation of the proof, relating Gromow-Witten theory in the bulk to the quantum cohomology of the Hilbert scheme on the boundary.
We study a class of Little String Theories (LSTs) of A type, described by $N$ parallel M5-branes spread out on a circle and which in the low energy regime engineer supersymmetric gauge theories with $U(N)$ gauge group. The BPS states in this setting
We explore large-$N$ symmetric orbifolds of the $mathcal N=2$ minimal models, and find evidence that their moduli spaces each contain a supergravity point. We identify single-trace exactly marginal operators that deform them away from the symmetric o
We review the properties of orbifold operations on two-dimensional quantum field theories, either bosonic or fermionic, and describe the Orbifold groupoids which control the composition of orbifold operations. Three-dimensional TQFTs of Dijkgraaf-Wit
We study (4+2n)-dimensional N=1 super Yang-Mills theory on the orbifold background with non-vanishing magnetic flux. In particular, we study zero-modes of spinor fields. The flavor structure of our models is different from one in magnetized torus mod
A classic theorem of Kazhdan and Margulis states that for any semisimple Lie group without compact factors, there is a positive lower bound on the covolume of lattices. H. C. Wangs subsequent quantitative analysis showed that the fundamental domain o