ﻻ يوجد ملخص باللغة العربية
The spread of an infectious disease through a population can be modeled using a network or a graph. In digital advertising, internet device graphs are graph data sets that organize identifiers produced by mobile phones, PCs, TVs, and tablets as they access media on the internet. Characterized by immense scale, they have become ubiquitous as they enable targeted advertising, content customization and tracking. This paper posits that internet device graphs, in particular those based on IP colocation, can provide significant utility in predicting and modeling the spread of infectious disease. Starting the week of March 16th, 2020, in the United States, many individuals began to `shelter-in-place as schools and workplaces across the nation closed because of the COVID-19 pandemic. This paper quantifies the effect of the shelter-in-place orders on a large scale internet device graph with more than a billion nodes by studying the graph before and after orders went into effect. The effects are clearly visible. The structure of the graph suggests behavior least conducive to transmission of infection occurred in the US between April 12th and 19th, 2020. This paper also discusses the utility of device graphs for i) contact tracing, ii) prediction of `hot spots, iii) simulation of infectious disease spread, and iv) delivery of advertisement-based warnings to potentially exposed individuals. The paper also posits an overarching question: can systems and datasets amassed by entities in the digital ad ecosystem aid in the fight against COVID-19?
Contact tracing has been extensively studied from different perspectives in recent years. However, there is no clear indication of why this intervention has proven effective in some epidemics (SARS) and mostly ineffective in some others (COVID-19). H
During a pandemic, contact tracing is an essential tool to drive down the infection rate within a population. To accelerate the laborious manual contact tracing process, digital contact tracing (DCT) tools can track contact events transparently and p
Digital contact tracing of an infected person, testing the possible infection for the contacted persons, and isolation play a crucial role in alleviating the outbreak. Here, we design a dynamic graph streaming algorithm that can trace the contacts un
Isolation of symptomatic individuals, tracing and testing of their nonsymptomatic contacts are fundamental strategies for mitigating the current COVID-19 pandemic. The breaking of contagion chains relies on two complementary strategies: manual recons
Humans interact through numerous channels to build and maintain social connections: they meet face-to-face, initiate phone calls or send text messages, and interact via social media. Although it is known that the network of physical contacts, for exa