ترغب بنشر مسار تعليمي؟ اضغط هنا

Density of States Estimation for Out-of-Distribution Detection

99   0   0.0 ( 0 )
 نشر من قبل Warren Morningstar
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Perhaps surprisingly, recent studies have shown probabilistic model likelihoods have poor specificity for out-of-distribution (OOD) detection and often assign higher likelihoods to OOD data than in-distribution data. To ameliorate this issue we propose DoSE, the density of states estimator. Drawing on the statistical physics notion of ``density of states, the DoSE decision rule avoids direct comparison of model probabilities, and instead utilizes the ``probability of the model probability, or indeed the frequency of any reasonable statistic. The frequency is calculated using nonparametric density estimators (e.g., KDE and one-class SVM) which measure the typicality of various model statistics given the training data and from which we can flag test points with low typicality as anomalous. Unlike many other methods, DoSE requires neither labeled data nor OOD examples. DoSE is modular and can be trivially applied to any existing, trained model. We demonstrate DoSEs state-of-the-art performance against other unsupervised OOD detectors on previously established ``hard benchmarks.



قيم البحث

اقرأ أيضاً

Commonly, Deep Neural Networks (DNNs) generalize well on samples drawn from a distribution similar to that of the training set. However, DNNs predictions are brittle and unreliable when the test samples are drawn from a dissimilar distribution. This presents a major concern for deployment in real-world applications, where such behavior may come at a great cost -- as in the case of autonomous vehicles or healthcare applications. This paper frames the Out Of Distribution (OOD) detection problem in DNN as a statistical hypothesis testing problem. Unlike previous OOD detection heuristics, our framework is guaranteed to maintain the false positive rate (detecting OOD as in-distribution) for test data. We build on this framework to suggest a novel OOD procedure based on low-order statistics. Our method achieves comparable or better than state-of-the-art results on well-accepted OOD benchmarks without retraining the network parameters -- and at a fraction of the computational cost.
135 - Aurick Zhou , Sergey Levine 2020
While deep neural networks provide good performance for a range of challenging tasks, calibration and uncertainty estimation remain major challenges, especially under distribution shift. In this paper, we propose the amortized conditional normalized maximum likelihood (ACNML) method as a scalable general-purpose approach for uncertainty estimation, calibration, and out-of-distribution robustness with deep networks. Our algorithm builds on the conditional normalized maximum likelihood (CNML) coding scheme, which has minimax optimal properties according to the minimum description length principle, but is computationally intractable to evaluate exactly for all but the simplest of model classes. We propose to use approximate Bayesian inference technqiues to produce a tractable approximation to the CNML distribution. Our approach can be combined with any approximate inference algorithm that provides tractable posterior densities over model parameters. We demonstrate that ACNML compares favorably to a number of prior techniques for uncertainty estimation in terms of calibration on out-of-distribution inputs.
The need to avoid confident predictions on unfamiliar data has sparked interest in out-of-distribution (OOD) detection. It is widely assumed that Bayesian neural networks (BNN) are well suited for this task, as the endowed epistemic uncertainty shoul d lead to disagreement in predictions on outliers. In this paper, we question this assumption and provide empirical evidence that proper Bayesian inference with common neural network architectures does not necessarily lead to good OOD detection. To circumvent the use of approximate inference, we start by studying the infinite-width case, where Bayesian inference can be exact considering the corresponding Gaussian process. Strikingly, the kernels induced under common architectural choices lead to uncertainties that do not reflect the underlying data generating process and are therefore unsuited for OOD detection. Finally, we study finite-width networks using HMC, and observe OOD behavior that is consistent with the infinite-width case. Overall, our study discloses fundamental problems when naively using BNNs for OOD detection and opens interesting avenues for future research.
Determining whether inputs are out-of-distribution (OOD) is an essential building block for safely deploying machine learning models in the open world. However, previous methods relying on the softmax confidence score suffer from overconfident poster ior distributions for OOD data. We propose a unified framework for OOD detection that uses an energy score. We show that energy scores better distinguish in- and out-of-distribution samples than the traditional approach using the softmax scores. Unlike softmax confidence scores, energy scores are theoretically aligned with the probability density of the inputs and are less susceptible to the overconfidence issue. Within this framework, energy can be flexibly used as a scoring function for any pre-trained neural classifier as well as a trainable cost function to shape the energy surface explicitly for OOD detection. On a CIFAR-10 pre-trained WideResNet, using the energy score reduces the average FPR (at TPR 95%) by 18.03% compared to the softmax confidence score. With energy-based training, our method outperforms the state-of-the-art on common benchmarks.
With the recently rapid development in deep learning, deep neural networks have been widely adopted in many real-life applications. However, deep neural networks are also known to have very little control over its uncertainty for unseen examples, whi ch potentially causes very harmful and annoying consequences in practical scenarios. In this paper, we are particularly interested in designing a higher-order uncertainty metric for deep neural networks and investigate its effectiveness under the out-of-distribution detection task proposed by~cite{hendrycks2016baseline}. Our method first assumes there exists an underlying higher-order distribution $mathbb{P}(z)$, which controls label-wise categorical distribution $mathbb{P}(y)$ over classes on the K-dimension simplex, and then approximate such higher-order distribution via parameterized posterior function $p_{theta}(z|x)$ under variational inference framework, finally we use the entropy of learned posterior distribution $p_{theta}(z|x)$ as uncertainty measure to detect out-of-distribution examples. Further, we propose an auxiliary objective function to discriminate against synthesized adversarial examples to further increase the robustness of the proposed uncertainty measure. Through comprehensive experiments on various datasets, our proposed framework is demonstrated to consistently outperform competing algorithms.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا