ﻻ يوجد ملخص باللغة العربية
We investigate the advantages of machine learning techniques to recognize the dynamics of topological objects in quantum field theories. We consider the compact U(1) gauge theory in three spacetime dimensions as the simplest example of a theory that exhibits confinement and mass gap phenomena generated by monopoles. We train a neural network with a generated set of monopole configurations to distinguish between confinement and deconfinement phases, from which it is possible to determine the deconfinement transition point and to predict several observables. The model uses a supervised learning approach and treats the monopole configurations as three-dimensional images (holograms). We show that the model can determine the transition temperature with accuracy, which depends on the criteria implemented in the algorithm. More importantly, we train the neural network with configurations from a single lattice size before making predictions for configurations from other lattice sizes, from which a reliable estimation of the critical temperatures are obtained.
We perform digital quantum simulation to study screening and confinement in a gauge theory with a topological term, focusing on ($1+1$)-dimensional quantum electrodynamics (Schwinger model) with a theta term. We compute the ground state energy in the
In this paper we correct previous work on magnetic charge plus a photon mass. We show that contrary to previous claims this system has a very simple, closed form solution which is the Dirac string potential multiplied by a exponential decaying part.
The hypothesis is analysed that the monopoles condensing in QCD vacuum to make it a dual superconductor are classical solutions of the equations of motion.
We study the machine learning techniques applied to the lattice gauge theorys critical behavior, particularly to the confinement/deconfinement phase transition in the SU(2) and SU(3) gauge theories. We find that the neural network, trained on lattice
We study monopoles and corresponding t Hooft tensor in QCD with a generic compact gauge group. This issue is relevant to the understanding of color confinement in terms of dual symmetry.