ﻻ يوجد ملخص باللغة العربية
As a canonical response to the applied magnetic field, the electronic states of a metal are fundamentally reorganized into Landau levels. In Dirac metals, Landau levels can be expected without magnetic fields, provided that an inhomogeneous strain is applied to spatially modulate electron hoppings in a similar way as the Aharonov-Bohm phase. We here predict that a twisted zigzag nanoribbon of graphene exhibits strain-induced pseudo Landau levels of unexplored but analytically solvable dispersions at low energies. The presence of such dispersive pseudo Landau levels results in a negative strain resistivity characterizing the $(1+1)$-dimensional chiral anomaly if partially filled and can greatly enhance the thermopower when fully filled.
The degeneracy and spatial support of pseudo-Landau levels (pLLs) in strained honeycomb lattices systematically depends on the geometry -- for instance, in hexagonal and rectangular flakes the 0th pLL displays a twofold increased degeneracy, while th
Combining the tight-binding approximation and linear elasticity theory for a planar membrane, we investigate stretching of a graphene flake assuming that two opposite edges of the sample are clamped by the contacts. We show that, depending on the asp
Using an array of coupled microwave resonators arranged in a deformed honeycomb lattice, we experimentally observe the formation of pseudo-Landau levels in the whole crossover from vanishing to large pseudomagnetic field strength. This is achieved by
We study RKKY interactions for magnetic impurities on graphene in situations where the electronic spectrum is in the form of Landau levels. Two such situations are considered: non-uniformly strained graphene, and graphene in a real magnetic field. RK
We study the discrete energy spectrum of curved graphene sheets in the presence of a magnetic field. The shifting of the Landau levels is determined for complex and realistic geometries of curved graphene sheets. The energy levels follow a similar sq