ﻻ يوجد ملخص باللغة العربية
The accuracy of available channel state information (CSI) directly affects the performance of millimeter wave (mmWave) communications. In this article, we provide an overview on CSI acquisition including beam training and channel estimation for mmWave massive multiple-input multiple-output systems. The beam training can avoid the estimation of a large-dimension channel matrix while the channel estimation can flexibly exploit advanced signal processing techniques. After discussing the traditional and machine learning-based approaches in this article, we compare different approaches in terms of spectral efficiency, computational complexity, and overhead.
Unmanned aerial vehicle (UAV) millimeter wave (mmWave) technologies can provide flexible link and high data rate for future communication networks. By considering the new features of three-dimensional (3D) scattering space, 3D velocity, 3D antenna ar
Channel estimation is very challenging when the receiver is equipped with a limited number of radio-frequency (RF) chains in beamspace millimeter-wave (mmWave) massive multiple-input and multiple-output systems. To solve this problem, we exploit a le
In this paper, we develop two high-resolution channel estimation schemes based on the estimating signal parameters via the rotational invariance techniques (ESPRIT) method for frequency-selective millimeter wave (mmWave) massive MIMO systems. The fir
In a time-varying massive multiple-input multipleoutput (MIMO) system, the acquisition of the downlink channel state information at the base station (BS) is a very challenging task due to the prohibitively high overheads associated with downlink trai
A reconfigurable intelligent surface (RIS) can shape the radio propagation by passively changing the directions of impinging electromagnetic waves. The optimal control of the RIS requires perfect channel state information (CSI) of all the links conne