ﻻ يوجد ملخص باللغة العربية
Silicon is host to two separate leading quantum technology platforms: integrated silicon photonics as well as long-lived spin qubits. There is an ongoing search for the ideal photon-spin interface able to hybridize these two approaches into a single silicon platform offering substantially expanded capabilities. A number of silicon defects are known to have spin-selective optical transitions, although very few of these are known to be in the highly desirable telecommunications bands, and those that do often do not couple strongly to light. Here we characterize the T center in silicon, a highly stable silicon defect which supports a short-lived bound exciton that upon recombination emits light in the telecommunications O-band. In this first study of T centers in $^{28}$Si, we present the temperature dependence of the zero phonon line, report ensemble zero phonon linewidths as narrow as 33(2) MHz, and elucidate the excited state spectrum of the bound exciton. Magneto-photoluminescence, in conjunction with magnetic resonance, is used to observe twelve distinct orientational subsets of the T center, which are independently addressable due to the anisotropic g factor of the bound excitons hole spin. The T center is thus a promising contender for the hybridization of silicons two leading quantum technology platforms.
An additional value of the Avogadro constant was obtained by counting the atoms in isotopically enriched Si spheres. With respect to the previous determination, the spheres were etched and repolished to eliminate metal contaminations and to improve t
The possible occurence of highly deformed configurations is investigated in the $^{40}$Ca and $^{56}$Ni di-nuclear systems as formed in the $^{28}$Si+$^{12}$C,$^{28}$Si reactions by using the properties of emitted light charged particles. Inclusive a
Spins in the `semiconductor vacuum of silicon-28 ($^{28}$Si) are suitable qubit candidates due to their long coherence times. An isotopically purified substrate of $^{28}$Si is required to limit the decoherence pathway caused by magnetic perturbation
We report measurements of spin-dependent scattering of conduction electrons by neutral donors in an accumulation-mode field-effect transistor formed in isotopically enriched silicon. Spin-dependent scattering was detected using electrically detected
We investigate the structural and quantum transport properties of isotopically enriched $^{28}$Si/$^{28}$SiO$_2$ stacks deposited on 300 mm Si wafers in an industrial CMOS fab. Highly uniform films are obtained with an isotopic purity greater than 99