ترغب بنشر مسار تعليمي؟ اضغط هنا

A silicon-integrated telecom photon-spin interface

70   0   0.0 ( 0 )
 نشر من قبل Stephanie Simmons
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Long-distance entanglement distribution is a vital capability for quantum technologies. An outstanding practical milestone towards this aim is the identification of a suitable matter-photon interface which possesses, simultaneously, long coherence lifetimes and efficient telecommunications-band optical access. In this work, alongside its sister publication, we report upon the T center, a silicon defect with spin-selective optical transitions at 1326 nm in the telecommunications O-band. Here we show that the T center in $^{28}$Si offers electron and nuclear spin lifetimes beyond a millisecond and second respectively, as well as optical lifetimes of 0.94(1) $mu$s and a Debye-Waller factor of 0.23(1). This work represents a significant step towards coherent photonic interconnects between long-lived silicon spins, spin-entangled telecom single-photon emitters, and spin-dependent silicon-integrated photonic nonlinearities for future global quantum technologies.



قيم البحث

اقرأ أيضاً

We create and isolate single-photon emitters with a high brightness approaching $10^5$ counts per second in commercial silicon-on-insulator (SOI) wafers. The emission occurs in the infrared spectral range with a spectrally narrow zero phonon line in the telecom O-band and shows a high photostability even after days of continuous operation. The origin of the emitters is attributed to one of the carbon-related color centers in silicon, the so-called G center, allowing purification with the $^{12}$C and $^{28}$Si isotopes. Furthermore, we envision a concept of a highly-coherent scalable quantum photonic platform, where single-photon sources, waveguides and detectors are integrated on a SOI chip. Our results provide a route towards the implementation of quantum processors, repeaters and sensors compatible with the present-day silicon technology.
74 - X. Mi , M. Benito , S. Putz 2017
Electron spins in silicon quantum dots are attractive systems for quantum computing due to their long coherence times and the promise of rapid scaling using semiconductor fabrication techniques. While nearest neighbor exchange coupling of two spins h as been demonstrated, the interaction of spins via microwave frequency photons could enable long distance spin-spin coupling and all-to-all qubit connectivity. Here we demonstrate strong-coupling between a single spin in silicon and a microwave frequency photon with spin-photon coupling rates g_s/(2pi) > 10 MHz. The mechanism enabling coherent spin-photon interactions is based on spin-charge hybridization in the presence of a magnetic field gradient. In addition to spin-photon coupling, we demonstrate coherent control of a single spin in the device and quantum non-demolition spin state readout using cavity photons. These results open a direct path toward entangling single spins using microwave frequency photons.
100 - G. Arnold , M. Wulf , S. Barzanjeh 2020
Practical quantum networks require low-loss and noise-resilient optical interconnects as well as non-Gaussian resources for entanglement distillation and distributed quantum computation. The latter could be provided by superconducting circuits but - despite growing efforts and rapid progress - existing solutions to interface the microwave and optical domains lack either scalability or efficiency, and in most cases the conversion noise is not known. In this work we utilize the unique opportunities of silicon photonics, cavity optomechanics and superconducting circuits to demonstrate a fully integrated, coherent transducer connecting the microwave X and the telecom S bands with a total (internal) bidirectional transduction efficiency of 1.2% (135 %) at millikelvin temperatures. The coupling relies solely on the radiation pressure interaction mediated by the femtometer-scale motion of two silicon nanobeams and includes an optomechanical gain of about 20 dB. The chip-scale device is fabricated from CMOS compatible materials and achieves a V$_pi$ as low as 16 $mu$V for sub-nanowatt pump powers. Such power-efficient, ultra-sensitive and highly integrated hybrid interconnects might find applications ranging from quantum communication and RF receivers to magnetic resonance imaging.
Realizing single photon sources emitting in the telecom band on silicon substrates is essential to reach complementary-metal-oxide-semiconductor (CMOS) compatible devices that secure communications over long distances. In this work, we propose the mo nolithic growth of needlelike tapered InAs/InP quantum dot-nanowires (QD-NWs) on silicon substrates with a small taper angle and a nanowire diameter tailored to support a single mode waveguide. Such a NW geometry is obtained by a controlled balance over axial and radial growths during the gold-catalyzed growth of the NWs by molecular beam epitaxy. This allows us to investigate the impact of the taper angle on the emission properties of a single InAs/InP QD-NW. At room temperature, a Gaussian far-field emission profile in the telecom O-band with a 30{deg} beam divergence angle is demonstrated from a single InAs QD embedded in a 2{deg} tapered InP NW. Moreover, single photon emission is observed at cryogenic temperature for an off-resonant excitation and the best result, $g^2(0) = 0.05$, is obtained for a 7{deg} tapered NW. This all-encompassing study paves the way for the monolithic growth on silicon of an efficient single photon source in the telecom band based on InAs/InP QD-NWs.
111 - R. Ishihara , Y. Ando , S. Lee 2019
Room temperature operation of a spin exclusive or (XOR) gate was demonstrated in lateral spin valve devices with nondegenerate silicon (Si) channels. The spin XOR gate is a fundamental part of the magnetic logic gate (MLG) that enables reconfigurable and nonvolatile NAND or OR operation in one device. The device for the spin XOR gate consists of three iron (Fe)/cobalt (Co)/magnesium oxide (MgO) electrodes, i.e., two input and one output electrodes. Spins are injected into the Si channel from the input electrodes whose spin angular momentum corresponds to the binary input 1 or 0. The spin drift effect is controlled by a lateral electric field in the Si channel to adjust the spin accumulation voltages under two different parallel configurations, corresponding to (1, 1) and (0, 0), so that they exhibit the same value. As a result, the spin accumulation voltage detected by the output electrode exhibits three different voltages, represented by an XOR gate. The one-dimensional spin drift-diffusion model clearly explains the obtained XOR behavior. Charge current detection of the spin XOR gate is also demonstrated. The detected charge current has a maximum of 0.94 nA, the highest value in spin XOR gates reported thus far. Furthermore, gate voltage modulation of the spin XOR gate is also demonstrated, which enables operation of multiple MLG devices.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا