ﻻ يوجد ملخص باللغة العربية
Gravitationally bound structures composed by fermions and scalar particles known as fermion-boson stars are regular and static configurations obtained by solving the coupled Einstein-Klein-Gordon-Euler (EKGE) system. In this work, we discuss one possible scenario through which these fermion-boson stars may form by solving numerically the EKGE system under the simplifying assumption of spherical symmetry. Our initial configurations assume an already existing neutron star surrounded by an accreting cloud of a massive and complex scalar field. The results of our simulations show that once part of the initial scalar field is expelled via gravitational cooling the system gradually oscillates around an equilibrium configuration that is asymptotically consistent with a static solution of the system. The formation of fermion-boson stars for large positive values of the coupling constant in the self-interaction term of the scalar-field potential reveal the presence of a node in the scalar field. This suggests that a fermionic core may help stabilize configurations with nodes in the bosonic sector, as happens for purely boson stars in which the ground state and the first excited state coexist.
Compact objects, like neutron stars and white dwarfs, may accrete dark matter, and then be sensitive probes of its presence. These compact stars with a dark matter component can be modeled by a perfect fluid minimally coupled to a complex scalar fiel
We study numerically the nonlinear stability of {it excited} fermion-boson stars in spherical symmetry. Such compound hypothetical stars, composed by fermions and bosons, are gravitationally bound, regular, and static configurations described within
We perform numerical evolutions of the fully non-linear Einstein-(complex, massive)Klein-Gordon and Einstein-(complex)Proca systems, to assess the formation and stability of spinning bosonic stars. In the scalar/vector case these are known as boson/P
We perform fully non-linear numerical simulations within the spherically symmetric Einstein-(complex)Proca system. Starting with Proca field distributions that obey the Hamiltonian, momentum and Gaussian constraints, we show that the self-gravity of
In a certain class of scalar-Gauss-Bonnet gravity, the black holes and the neutron stars can undergo spontaneous scalarization - a strong gravity phase transition triggered by a tachyonic instability due to the non-minimal coupling between the scalar