ﻻ يوجد ملخص باللغة العربية
The compression of Generative Adversarial Networks (GANs) has lately drawn attention, due to the increasing demand for deploying GANs into mobile devices for numerous applications such as image translation, enhancement and editing. However, compared to the substantial efforts to compressing other deep models, the research on compressing GANs (usually the generators) remains at its infancy stage. Existing GAN compression algorithms are limited to handling specific GAN architectures and losses. Inspired by the recent success of AutoML in deep compression, we introduce AutoML to GAN compression and develop an AutoGAN-Distiller (AGD) framework. Starting with a specifically designed efficient search space, AGD performs an end-to-end discovery for new efficient generators, given the target computational resource constraints. The search is guided by the original GAN model via knowledge distillation, therefore fulfilling the compression. AGD is fully automatic, standalone (i.e., needing no trained discriminators), and generically applicable to various GAN models. We evaluate AGD in two representative GAN tasks: image translation and super resolution. Without bells and whistles, AGD yields remarkably lightweight yet more competitive compressed models, that largely outperform existing alternatives. Our codes and pretrained models are available at https://github.com/TAMU-VITA/AGD.
Neural architecture search (NAS) has witnessed prevailing success in image classification and (very recently) segmentation tasks. In this paper, we present the first preliminary study on introducing the NAS algorithm to generative adversarial network
Recent improvements in generative adversarial visual synthesis incorporate real and fake image transformation in a self-supervised setting, leading to increased stability and perceptual fidelity. However, these approaches typically involve image augm
Recent work introduced progressive network growing as a promising way to ease the training for large GANs, but the model design and architecture-growing strategy still remain under-explored and needs manual design for different image data. In this pa
Generative Adversarial Networks (GANs) have demonstrated unprecedented success in various image generation tasks. The encouraging results, however, come at the price of a cumbersome training process, during which the generator and discriminator are a
Current GAN-based art generation methods produce unoriginal artwork due to their dependence on conditional input. Here, we propose Sketch-And-Paint GAN (SAPGAN), the first model which generates Chinese landscape paintings from end to end, without con